A. Franco, J. Geissbühler, N. Wyrsch, and C. Ballif, Fabrication and characterization of monolithically integrated microchannel plates based on amorphous silicon, Sci. Rep, vol.4, pp.1-7, 2014.

J. Löffler, C. Ballif, and N. Wyrsch, Amorphous silicon-based micro-channel plate detectors with high multiplication gain, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip, 2018.

E. H. Eberhardt, Gain model for microchannel plates, Appl. Opt, vol.18, issue.9, pp.1418-1423, 1979.

E. H. Eberhardt, An Operational Model for Microchannel Plate Devices, IEEE Trans. Nucl. Sci, vol.28, issue.1, pp.712-717, 1981.

L. Giudicotti and R. Pasqualotto, Characterization of fast microchannel plate photomultipliers for the ITER core LIDAR Thomson scattering system, J. Instrum, vol.7, issue.02, pp.2037-02037, 2012.

A. J. Guest, A computer model of channel multiplier plate performance, Acta Electron, vol.14, issue.1, pp.79-97, 1971.

C. A. Kruschwitz, M. Wu, and G. A. Rochau, Monte Carlo simulations of microchannel plate detectors. II. Pulsed voltage results, Rev. Sci. Instrum, vol.82, issue.2, 2011.

A. Shymanska, Effect of high-efficiency emitter on noise characteristics of electron amplifiers, J. Comput. Electron, vol.14, issue.1, pp.341-351, 2015.

M. A. Furman and M. T. Pivi, Probabilistic model for the simulation of secondary electron emission, Phys. Rev. Spec. Top. -Accel. Beams, vol.5, issue.12, pp.82-99, 2002.

N. W. Frey, J. Löffler, and C. Ballif, Characterization of Amorphous Silicon Based Microchannel Plates with High Aspect Ratio, IEEE Nucl. Sci. Symp. Conf. Rec

T. Koshikawa and R. Shimizu, A Monte Carlo calculation of lowenergy secondary electron emission from metals, J. Phys. D. Appl. Phys, vol.7, issue.9, pp.1303-1315, 1974.

M. Belhaj, T. Tondu, V. Inguimbert, P. Barroy, F. Silva et al., The effects of incident electron current density and temperature on the total electron emission yield of polycrystalline CVD diamond, J. Phys. D. Appl. Phys, vol.43, issue.13, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00569568

M. Belhaj, T. Tondu, V. Inguimbert, and J. P. Chardon, A Kelvin probe based method for measuring the electron emission yield of insulators and insulated conductors subjected to electron irradiation, J. Phys. D. Appl. Phys, vol.42, issue.10, 2009.

K. Kanaya, S. Ono, and F. Ishigaki, Secondary electron emission from insulators, J. Phys. D. Appl. Phys, vol.11, issue.17, pp.2425-2437, 1978.

H. Seiler, Secondary electron emission in the scanning electron microscope, J. Appl. Phys, vol.54, issue.11, 1983.

R. Cimino, Can low-energy electrons affect high-energy physics accelerators?, Phys. Rev. Lett, vol.93, issue.1, pp.14801-14802, 2004.

S. F. Mao, Y. G. Li, R. G. Zeng, and Z. J. Ding, Electron inelastic scattering and secondary electron emission calculated without the single pole approximation, J. Appl. Phys, vol.104, issue.11, 2008.

E. Kieft and E. Bosch, Refinement of Monte Carlo simulations of electron-specimen interaction in low-voltage SEM, J. Phys. D. Appl. Phys, vol.41, issue.21, 2008.

T. Verduin, Quantum Noise Effects in e-Beam Lithography and Metrology, 2017.

E. Schreiber and H. J. Fitting, Monte Carlo simulation of secondary electron emission from the insulator SiO2, J. Electron Spectros. Relat. Phenomena, vol.124, issue.1, pp.25-37, 2002.

N. Bundaleski, M. Belhaj, T. Gineste, and O. M. Teodoro, Calculation of the angular dependence of the total electron yield, Vacuum, vol.122, pp.255-259, 2015.