A. Evans, J. Hutchinson, and M. Ashby, Multifunctionality of cellular metal systems, Progress in Materials Science, vol.43, issue.3, 1997.
DOI : 10.1016/S0079-6425(98)00004-8

J. Wang, D. Gan, and . Mater, Effects of grain boundary carbides on the mechanical properties of Inconel 600, Materials Chemistry and Physics, vol.70, issue.2, pp.124-128, 2001.
DOI : 10.1016/S0254-0584(00)00484-3

V. Marcadon, C. Davoine, B. Passilly, D. Boivin, F. Popo_ et al., Mechanical behaviour of hollow-tube stackings: Experimental characterization and modelling of the role of their constitutive material behaviour, Acta Materialia, vol.60, issue.15, pp.5626-5644, 2012.
DOI : 10.1016/j.actamat.2012.06.045

C. Davoine, G. Portemont, N. Horezan, B. Langrand, V. Marcadon et al., Mechanical behaviour of hollow-tube stackings: Cellular materials made of stacked tubes: influence of the manufacturing process on the dynamic behavior of the constitutive material, 2014.

W. Lee, C. Liu, and T. Sun, Dynamic impact response and microstructural evolution of inconel 690 superalloy at elevated temperatures, International Journal of Impact Engineering, vol.32, issue.1-4, pp.210-223, 2005.
DOI : 10.1016/j.ijimpeng.2004.09.007

X. Wang, C. Huang, B. Zou, H. Liu, and H. Zhu, Dynamic behavior and a modified Johnson???Cook constitutive model of Inconel 718 at high strain rate and elevated temperature, Materials Science and Engineering: A, vol.580, pp.385-390, 2013.
DOI : 10.1016/j.msea.2013.05.062

G. Johnson and W. Cook, A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures The Hague, The Netherlands, Proceeding of the 7th International Symposium on Ballistics, pp.541-547, 1983.