
HAL Id: hal-01070537
https://onera.hal.science/hal-01070537

Submitted on 1 Oct 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Grouping Approach to Task Scheduling with
Functional and Non-Functional Requirements

Luca Santinelli, W. Puffitsch, Arnaud Dumerat, Frédéric Boniol, Claire
Pagetti, Victor Jegu

To cite this version:
Luca Santinelli, W. Puffitsch, Arnaud Dumerat, Frédéric Boniol, Claire Pagetti, et al.. A Grouping
Approach to Task Scheduling with Functional and Non-Functional Requirements. Embedded real-time
software and systems (ERTS2 2014), Feb 2014, TOULOUSE, France. �hal-01070537�

https://onera.hal.science/hal-01070537
https://hal.archives-ouvertes.fr

A Grouping Approach to Task Scheduling with Functional and

Non-Functional Requirements

Luca Santinelli1, Wolfgang Puffitsch2, Arnaud Dumerat3, Frederic Boniol1,

Claire Pagetti1, and Jegu Victor3

1ONERA Toulouse, name.surname@onera.fr
2DTU Compute Copenhagen, wopu@dtu.dk

3AIRBUS Toulouse, ename.surname@airbus.com

Abstract

The problem of finding a feasible task scheduling with both functional and non-functional requirements has risen

to complexities never experienced before. In this paper we propose a functional task classification stage through

which tasks are grouped together according to their functional properties. Then the task scheduling problem is

reduced into a group scheduling problem where inter-group and intra-group ordering are experienced to cope with

the timing requirements systems demand. In order to quantify the effects of the proposed grouping approach, we

evaluate the approach by applying it to several realistic case studies.

1 Introduction

The well-known definition of real-time systems states that the correctness of such systems “depends not only on the
logical result of the computation but also on the time at which the results are produced” [1]. Therefore, real-time
systems combine functional and non-functional requirements. On the one hand, the result must be functionally correct.
On the other hand, the result must arrive in time.

Reasoning about functional requirements can mostly abstract away implementation and run-time aspects. In con-
trast, non-functional requirements tend to depend heavily on such aspects. In this paper, we consider functional
requirements on the task level, which translate to precedence constraints. A schedule that observes the functional
dependencies between tasks will produce a functionally correct result, but can fail miserably when considering the time
at which results arrive. Moreover, execution times of tasks are irrelevant with regard to functional requirements, but
determine if a schedule that fulfills the non-functional requirements can exist at all.

Finding valid schedules can become problematic for embedded systems with large task sets that include both
functional requirements in the form of dependencies between tasks and non-functional requirements in terms of timing
constraints. On the one hand, the dependencies defeat traditional schedulability tests that assume independence
between tasks. On the other hand, exact approaches face limitations when being applied to task sets with thousands
of tasks [2, 3, 4].

In order to make such task sets tractable, it is necessary to reduce the complexity of the scheduling problem. We
propose to group tasks according to their functional requirements, and to perform scheduling on these groups of tasks
rather than individual tasks. This would reduces the number of items to be scheduled and consequently the complexity
of the scheduling problem to be solved.

Contributions: This paper investigates the use of the functional requirements to group tasks and reduce the
complexity of the scheduling problem. The goal is to find an abstraction level that combines both the functional and
the non-functional view of a system, while being sufficiently abstract to enable the treatment of large task sets. In
particular, we consider the effects of different abstractions (we call them grouping) policies on non-functional properties
such as latencies.

Organization of the paper: In Section 2 the scheduling problem is presented together with the graph representa-
tion to the task functional requirements. Section 3 defines the grouping idea as well as two grouping policies proposed,
while Section 4 considers the different task orderings with or without grouping. Section 5 investigates the effect of task
grouping to timing constraints in the form of latency constraints. In Section 6 we apply our grouping framework to
avionic examples with multiple tasks functionally connected. The grouping strategy is compared with the non-grouping.
Finally, Section 7 concludes the paper and provides future perspectives for the presented work.

1.1 Related Work

There are the several works on combining both functional requirements and timing constraints to the real-time scheduling
of tasks. We have been inspired by them to develop our grouping framework.

Chetto et al. [5] first considered the effect of precedence constraints between tasks on the dynamic priority scheduling
problem. That paper proposes an algorithm to accept or reject aperiodic tasks with precedence constraints to guarantee
the timing behavior of the rest of the system’s tasks.

Spuri et al. [6] extended formal results on precedence constrained tasks to arbitrarily timed tasks with preemption;
the precedence constraints are enforced through dynamic priority schedulers. Goddard et al. [7, 8] refer to data flows
to exploit real-time properties such as latencies and buffers and perform schedulability analyses.

Cucu-Grosjean et al. have tackled with the scheduling problem and graph representations for the functional con-
straints [9, 10]. That paper models scheduling problems with precedence, periodicity and latency constraints. Yomsi
and Sorel [11] have instead considered non-schedulability conditions to precedence constrained tasks and restrict the
study to only potentially schedulable systems.

All those works are inspired, among the others, by Clark [12] which outlines the task dependency problem together
with the complexity of the scheduling problem when the dependences are dynamic, and the work of Natale et al. [13]
where end-to-end timing constraints are applied to guarantee timing constraints of distributed applications commu-
nicating via synchronous primitives. The joint and coordinated scheduling of tasks and messages is defined, while
precedence constraints are converted into pseudo-deadline. In there, a combination of off-line and on-line scheduling
is proposed. To the best of our knowledge, the approaches developed so far do not rely on task classification (task
grouping) techniques to reduce the number of objects which have to be scheduled while guaranteeing both functional
and non-functional constraints. With this work, we continue the exploration of the grouping approach started with [14].

There are several exact (i.e., non-heuristic) approaches to finding off-line schedules for task sets with precedence
constraints. An early approach is the work by Xu and Parnas [2], which starts from a heuristic solution that is consistent
with the functional requirements and then uses a branch-and-bound algorithm to improve the solution with regard to
the non-functional requirements. The branch-and-bound algorithm continues until it finds a schedule that fulfills both
the functional and non-functional requirements or until it has proven that no valid schedule exists.

Other approaches combine the functional and non-functional requirements and try to find a solution that satisfies
both in a single step. Grolleau and Choquet-Geniet use Petri nets to model the scheduling of dependent tasks [3].

Ekelin [4] explores the use of constraint programming to solve scheduling problems, and presents several optimizations
to speed up the search for a valid solution. Priced timed automata have also been proposed to schedule real-time
tasks [15]. Their flexibility simplifies the adaption of different task and execution models.

While these approaches can be fairly efficient for some cases, they cannot escape the fact that the underlying problem
is a hard problem. As the number of tasks to be scheduled increases, finding a valid schedule becomes unfeasible rather
quickly. Reducing the number of items to be scheduled, as our grouping approach proposes, helps in making real-time
systems with thousands of tasks tractable.

2 Problem Statement & Backgrounding

In real-time systems, it is necessary to schedule the execution of tasks such that the system meets its timing constraints.
In addition to these non-functional requirements, the potential orderings of tasks can also be constrained by functional
requirements, i.e., precedence constraints, equivalently named functional dependences. Today’s real-time systems com-
prise a large number of tasks, timing constraints and precedence constraints and their size is expected to grow further.
Consequently, the complexity to find a schedule that fulfills all constraints becomes increasingly harder, in particular
because the underlying problem is NP-hard [13, 16].

In this work we propose a two-stage approach to tackle the real-time scheduling problem. The framework first
classifies tasks into groups according to their functional requirements, and then schedule the groups of tasks to guarantee
the timing requirements. Our grouping scheduling approach is developed assuming a) data dependencies as precedence
constraints with a graph description, b) timing constraints described in terms of end-to-end latencies, although [10]
extended the scheduling problem with precedence constraints to deadline timing constraints, c) off-line, non-preemptive
and single-processor scheduling, d) mono-rate with synchronous tasks and the same period.

Example 2.1. Figure 1 shows the reference example we apply to explain the approach under development. The 22 tasks
have functional requirements described in Figure 1(a) with the precedence dependences as edges of the graph. Figure 1(b)
shows an example of task scheduling compliant to the functional requirements.

2.1 Functional Backgrounding

A real-time system can be seen as a task set Γ = {τ1, τ2, . . . τn} where each composing task τj is described by a tuple
(aj , Cj , Tj) with Cj being the task worst-case execution time, Tj the inter-arrival time of the task instances (jobs) and

2

τ1

τ2 τ3

τ4 τ5

τ6

τ7

τ8

τ9 τ10

τ11

τ12 τ13 τ14

τ15
τ16

τ17

τ18

τ19

τ20

τ21 τ22

(a) Functional dependencies through data flow and
graph representation

τ1 τ2 τ3τ4 τ5 τ6 τ7 τ8τ9 τ10 τ11 τ17 τ18τ19 τ20τ21 τ22

time

(b) An example of a possible task execution ordering for the tasks
within the graph

Figure 1: Task functional dependence description and scheduling.

aj the task activation which repeats at any of its instance. All the tasks of Γ are assumed with the same period to
approach safety-critical avionic platforms. Recent works have shown that in safety-critical avionic platforms the strict
time-oriented approach is applied with mono and multiple-rate tasks, [17, 18]. In our first stage we start with the
mono-rate case to converge to the multiple-rate case in the future. Thus all the tasks share the same period Tj .

In our model, the precedence constraints (i.e. data dependences) between tasks are described as a directed acyclic
graph G = (V,E) where V is the set of tasks Γ, Γ ≡ V, and E ⊆ V×V is the set of edges which represents the precedence
constraints between tasks.

Although classical real-time system models assume task execution as an infinite sequence of tasks instances (jobs),
we keep our model within the finite directed graph scenario considering the tasks as all tasks have the same period and
there are no offsets, jobs and tasks are equivalent.

We model the task set as a graph, where tasks are represented by vertices and precedence constraints by edges.

Definition 2.2 (Precedence Constraint). Given a graph G = (V,E), an edge between two tasks τj and τk, τj → τk,
represents a precedence constraint between τj and τk.

A path p(τi, τo) from task τi to task τo within a graph G = (V,E) is an alternating sequence 〈τi, τi → τ1, τ1, . . . , τn →
τo, τo〉 of vertices and distinct edges where τi, τ1, . . . , τn, τo ∈ V and τi → τ1, . . . , τn → τo ∈ E. We denote by P the set
of all the paths in G and we say that two tasks τk and τj are connected if there is at least one path p(τk, τj) ∈ P . As
the number of vertices and edges is finite and the graph is acyclic, P is a finite set. By P (τk, τj) we denote the set of
all the paths from τk to τj ; M(τk, τj) instead is the set of tasks belonging to all the possible paths from τk to τj .

Definition 2.3 (Predecessors and Successors). The set of predecessors (successors) of a task τi is denoted by preds(τi)

(succs(τi)) and can be defined as preds(τj)
def
= {τk | τk → τj} and succs(τj)

def
= {τk | τj → τk}.

The cardinality of a task is the sum of the number of predecessors and successors, ‖τk‖ = ‖preds(τk)‖+‖succs(τk)‖.
Within a functional graph, we can classify the tasks according to the structure of the graph. We have “begin tasks”

(deb) as those with no predecessors, “intermediate tasks” (int) with both predecessors and successors, and “end tasks”
or leaves (leaf) with just predecessor tasks.

The functional requirements results into functional dependences between tasks.

Definition 2.4 (Direct Dependence ≻). Given a graph G = (V,E), a task τk directly depends on a task τj, τk ≻ τj if
τj → τk.

The direct dependence relation can be extended transitively to a notion of functional dependence.

Definition 2.5 (Functional Dependence ⊲). Given a graph G = (V,E), a task τk functionally depends on a task τj,
τk ⊲ τj if there exists at least one path p(τk, τj) ∈ P connecting τk and τj within G.

The functional dependence is a transitive relation between tasks; indeed, if τk → τj and τj → τr, then τk⊲ τr. Thus
the direct dependence is a stricter definition of dependence ≻⊆ ⊲, which does not include the transitivity property.

Definition 2.6 (Functional Independence ⊲). The notion of independence is the opposite (the negation) of the depen-
dence, ⊲. Two tasks τj and τk are called independent, τj⊲τk if ∄ p(τj , τk) ∈ P.

The functional description implies a partial ordering between tasks, but (usually) allows more than one valid schedule.
We can define equivalence among scheduling as follows: two scheduling resulting from the same partial ordering are
functionally equivalent. The objective of the scheduling problem is to find in a total ordering of task such that complies
to both functional and non-functional requirements.

3

3 Functional Grouping

To simplify the scheduling problem with functional dependencies we propose to classify tasks according to their depen-
dencies and create groups of tasks.

Definition 3.1 (Grouping). Given a graph G = (V,E), a grouping G = {G1, . . . ,Gn} divides the task set into disjoint
subsets such that ∀Gi,Gj ∈ G, Gi ∩ Gj = ∅ and

⋃n

i=1 Gi = V.

The notion of direct and functional dependence can be extended from tasks to groups of tasks by considering groups
dependent if there is a dependence between any of their tasks:

Gi ≻ Gk ⇔ ∃τj ∈ Gi, τl ∈ Gk, τj ≻ τl (1)

Gi ⊲ Gk ⇔ ∃τj ∈ Gi, τl ∈ Gk, τj ⊲ τl (2)

The criteria for grouping may be chosen arbitrarily, and some grouping are more helpful with regard to scheduling than
others. In the following, we focus on two classes of grouping:

• Independence grouping, which exploits the notion of independence to partition the task set.

• Dependence grouping, which creates groups of dependence tasks.

3.1 Independence Grouping

Definition 3.2 (Independence Grouping). We call a grouping I = {I1, I2, . . .} an independence grouping if only
independent tasks belong to the same partition Ii,

∀ Ii ∈ I, ∀ τj , τk ∈ Ii, τj⊲τk. (3)

An independence grouping I = {I1, I2, . . .} partitions the task set into groups Ii, where all the tasks within are
independent among each others.

This independence definition does not infer a unique grouping. A trivial independence grouping would be a grouping
where each partition contains exactly one task. Obviously, such a grouping would not be particularly helpful. However,
even when considering non-trivial cases, grouping according to independence allows for some ambiguity. Consider tasks
τ2, τ3 and τ5 in the example given in Figure 1(a). Tasks τ2 and τ5 are independent, as well as tasks τ3 and τ5. In
contrast, tasks τ2 and τ3 are dependent and cannot belong to the same independence group. Therefore, we can group
such that either {τ2, τ5} ∈ I or {τ3, τ5} ∈ I. None of these alternatives is inherently better than the other.

In the following, we present two algorithms to create independence groupings. The first algorithm moves “forward”,
from begin tasks towards leaf tasks, while the second one moves “backward” in the task graph.

3.1.1 Forward independence grouping

Algorithm 1 shows an algorithm to create an independence grouping by moving forward through the task graph. In
the first step, it puts all tasks without predecessor tasks (begin tasks) into the same group. As none of these tasks
have predecessors, it cannot be the case that τi ⊲ τk and the group consists only of independent tasks. The algorithm
then removes these nodes and the related edges from the graph and creates a group which contains tasks without
predecessors in the new task graph. The same reasoning as before applies, and all tasks in the group are independent.
While removing tasks from the graph no relevant edges are removed; only the precedent tasks are evicted and the
dependences among remaining tasks remain unaffected. Therefore, Algorithm 1 creates a valid independence grouping.

3.1.2 Backward independence grouping

The inverse to Algorithm 1 is backward independence grouping, which starts from tasks without successors and moves
towards the input nodes. Its implementation is shown in Algorithm 2. The reasoning to show that the algorithm creates
and independence grouping is analogous to the reasoning for the forward algorithm.

Example 3.3. Figure 2(a) outlines the result of applying the forward independence algorithm to Example 1; the algo-
rithm creates 11 groups where, for example, τ2 and τ5 while leaving task τ3 in a group of its own. Applying the backward
algorithm to the example leads to a different grouping, which is shown in Figure 2(a). In contrast to the grouping created
by forward algorithm, τ3 and τ5 are now in the same group. Although resulting group partitions are different, we expect
both algorithms to result in similar complexity reductions for the scheduling problem.

4

I1

I2 I3

I4

I5
I6

I7 I8 I9

I10I11

(a) Independence grouping with the forward
algorithm, Algorithm 1

I1

I2 I3

I4

I5

I6

I7
I8

I9I10 I11

(b) Independence grouping with the back-
ward algorithm, Algorithm 2

D1

D2

D3

D4

D5

D6

D7

D8

D9

D10

(c) Dependence grouping, Algorithm 3

Figure 2: Functional grouping.

3.2 Dependence Grouping

Instead of grouping independent tasks, we can group tasks that form chains of dependent tasks.

Definition 3.4 (Chain). Two tasks τi and τk form a chain if τk is the only successor of τi and τi the only predecessor
of τk, or if there exists a sequence of chains between τi and τk through intermediate tasks.

τi τk
def
= (succs(τi) = {τk} ∧ preds(τk) = {τi}) ∨ (∃τl, τi τl ∧ τl τk) (4)

Definition 3.5 (Dependence Grouping). A dependence grouping D is a partitioning of the task set such that chains of
dependent tasks belong to the same group Di,

∀Di ∈ D, ∀τj , τk ∈ Di, with j 6= k ⇔ τj τk ∨ τk τj . (5)

A dependence grouping D = {D1,D2, . . .} partitions the task set into groups Di, where all the tasks within are
dependent among each others.

Algorithm 3 computes the dependence grouping. It starts from the tasks without any predecessors and iterates over
them creating a group for each of these, which includes the task and all those that form a chain with it. Afterwards, it
removes the tasks that already are part of a group and continues until the task graph is empty.

Algorithm 1 Forward indepen-
dence grouping algorithm
Input: Γ
Output: Ii
1: i← 1, R ← Γ
2: while R 6= ∅ do

3: Ii ← {τj | preds(R, τj) = ∅}
4: R ← R− Ii
5: i← i + 1
6: end while

Algorithm 2 Backward indepen-
dence grouping algorithm
Input: Γ
Output: Ii
1: i← 1, R ← Γ
2: while R 6= ∅ do

3: Ii ← {τj | succs(R, τj) = ∅}
4: R ← R− Ii
5: i← i + 1
6: end while

Algorithm 3 Dependence grouping
algorithm
Input: Γ
Output: Di

1: i← 1, R ← Γ
2: while R 6= ∅ do

3: T ← {τi | preds(R, τi) = ∅}
4: for τj ∈ T do

5: Di ← {τj} ∪ {τk | τj τk}
6: i← i + 1
7: end for

8: R ← R−
⋃i

j=1Dj

9: end while

Algorithm 3 implements a correct dependence grouping since it explores the whole graph for the largest dependence
groups, Equation (5). Intuitively, we can say that Algorithm 3 guarantees the larges dependence groups. In that sense
it dominates all the possible dependence grouping which start from intermediate or leaf tasks. In the future we will
formally prove the dominance.

Example 3.6. Figure 2(c) shows the result of applying dependence grouping to Example 1 with 10 resulting groups,
D1, D2, D3, D4, D5, D6, D7, D8, D9 and D10.

4 Task Scheduling

The precedence constraints define a partial order for the activation times of tasks. For tasks τi and τk with τi ⊲ τk, it
must be the case that τi activates earlier than τk. For independent tasks, with τi⊲τk, the precedence constraints do not
imply such an ordering among task activations. This means that the two scheduling where either τi executes before τj
or τj executes before τi are equivalent from the functional point of view.

The partial order established by the functional dependences is transformed into a total order by the scheduling.
For a system of tasks Γ, a schedule S is a totally ordered set of activation times of all the tasks S = {aj ∈ N}, τj ∈ V

such that all the precedence constraints are satisfied [9]. S is the set of all the possible schedules.

5

With the group decomposition we are proposing, for a scheduling problem we can differentiate two “levels” of
scheduling:

• the inter-group scheduling where it is tackled with group ordering. The groups are ordered according to functional
and non-functional requirements.

• The intra-group scheduling, as the ordering of the tasks composing each group. The tasks within each group needs
to be ordered facing both functional and non-functional requirements.

With an independence or a dependence grouping just a scheduling level (either intra-grouping or inter-grouping) needs
to be approached to define the task total ordering. This separation reduces the complexity of the scheduling problem.

Example 4.1. Taking the reference example from Figure 1, we have that the first block of the graph composed by the
tasks τ1, τ2, τ3, τ4 and τ5 can results into 10 possible schedules:

τ1 − τ2 − τ3 − τ4 − τ5, τ1 − τ2 − τ4 − τ5 − τ3, τ1 − τ4 − τ5 − τ2 − τ3, τ1 − τ4 − τ2 − τ5 − τ3,

τ1 − τ4 − τ2 − τ3 − τ5, τ1 − τ2 − τ4 − τ3 − τ5, τ4 − τ5 − τ1 − τ2 − τ3, τ4 − τ1 − τ5 − τ2 − τ3,

τ4 − τ1 − τ2 − τ5 − τ3, τ4 − τ1 − τ2 − τ3 − τ5.

All of them are compliant to the functional requirements, although they differ in terms timing.

Independence Scheduling With an independence grouping as computed by Algorithm 1 or Algorithm 2, the schedul-
ing of groups is already fixed. The algorithms create groups greedily, such that groups must be executed in the same
order as they were created for the forward algorithm, and in reverse order for the backward algorithm. However, as all
tasks are independent, the execution order of tasks within a group can be chosen freely. The independence grouping
reduces the possible task schedules, which in the worst case could eliminate all schedules that would satisfy the timing
requirements. However, the grouping does not add any additional schedules, and is therefore safe with regard to both
functional and non-functional requirements.

Example 4.2. From Example 2.1 with a forward independence grouping it is
I = {I1, I2, I3, I4, I5, I6, I7, I8, I9, I10, I11} where the group ordering is already decided as I1−I2−I3−I4−I5−I6−
I7−I8−I9−I10−I11, Figure 2(a). The total ordering is obtained selecting for each set Ii an order for the composing
tasks. This results into 2!2!1!1!2!2!3!4!3!1!1! = 13824 possible task combinations tough, still a complex problem.

Considering the subgraph I1 − I2 − I3 from a forward independence grouping, there are 4 possible orderings with
independence grouping τ1 − τ4 − τ2 − τ5 − τ3, τ1 − τ4 − τ5 − τ2 − τ3, τ4 − τ1 − τ2 − τ5 − τ3, τ4 − τ1 − τ5 − τ2 − τ3, out of
the 10 possible without any grouping applied, Example 4.1. This is the degree of flexibility we lose by applying grouping
while consistently reducing the complexity of the problem.

With a backward independence grouping, Algorithm 2 and Figure 2(b) it would be 1!2!2!1!2!2!2!3!3!3! = 6912, which
are slightly fewer combinations for possible schedules than for forward grouping. Considering the subgraph I1 −I2 −I3
from a backward independence grouping, there are 4 possible orderings with independence grouping τ1 − τ4 − τ2 − τ5 −
τ3, τ1 − τ4 − τ2 − τ3 − τ5, τ1 − τ2 − τ4 − τ5 − τ3, τ1 − τ2 − τ4 − τ3 − τ5, out of the 10 possible without any grouping applied,
Example 4.1. This is the degree of flexibility we lose and the difference with respect to a forward independence grouping.

Dependence Scheduling With the dependence grouping paradigm, the ordering of tasks within a group is fixed
by the functional constraints which are accounted by the grouping policy itself. In contrast, the scheduler has to
find a suitable ordering of the groups of dependent tasks. Within this paradigm, the scheduling remains a mixture
of functional and execution ordering with less flexibilities compared to the case without grouping. Like independence
grouping, dependence grouping is safe with regard to the functional requirements, but may eliminate all schedules that
would satisfy the timing constraints.

Example 4.3. The resulting dependence scheduling for Example 2.1 derives from the following set of combinations
{D1,D2} − D3 − {D4,D5} − {D6,D7,D8,D9} − D10, where the relative order between D1 and D2 does not affect the
functional requirements as for the tuples D4, D5, and D6,D7,D8, D9. The dependent scheduling results into 2!1!2!4!1! =
96 possible ordering. Considering the partition {D1,D2}−D3, with a dependence grouping, we have 2 possible ordering
depending on which between D1 or D2 is scheduled first, thus τ1 − τ2 − τ3 − τ4 − τ5, τ4 − τ5 − τ1 − τ2 − τ3 as a subset of
the 10 possible without any grouping. We notice that with a dependence grouping we further lose scheduling possibilities
in that particular configuration.

6

5 Analysis with Timing Constraints

The next step of this work is the analysis of the grouping effect to the timing constraints. In particular, we consider
latency constraints as end-to-end timing constraints to the task executions.

For a pair of tasks (τi, τo) belonging to a system and a schedule S of this system, we call latency the time between
the start of the task τi and the end of a task τo. We denote this time by L(τi, τo), as the input/output latency (I/O
latency). With no idle time in S (the work-conserving case), it is L(τi, τo) =

∑

∀c | ai≤ac≤ao
Cc, where the activations

ai and ao belong to the scheduling S. More generally, the latency is given by

L(τi, τo) = ao + Co − ai, (6)

when including possible idle times in the scheduling. The activation instants a encode the interference from other task
executions. The latency constraint is when the latency is less than or equal to an imposed bound l.

L(τi, τo) ≤ lL(τi,τo) ⇔ ao + Co − ai ≤ lL(τi,τo) (7)

The I/O latencies characterizing a task set Γ, described as Equation (7), are grouped into the set L.
The functional and non-functional scheduling problem becomes exploring the possible task ordering S looking for

those that satisfy both the functional requirements G and the latency constraints L.
Part of the complexity of the scheduling problem comes from the non-trivial relation between the task ordering and

the task activations. A latency L(τi, τo) is not only given by the tasks composing P (τi, τo). There exist tasks τj such
that although not in the input-output set of paths, τj /∈ M(τi, τo), they have to be scheduled after τi and before τo, due
to functional requirements. Those τj contributes to L(τi, τo). As we will see, the grouping analysis we propose allows
to extract simple relations between arrivals and latencies, thanks to the task classification and the group partitions.

With groups partitioning a functional graph, a latency can be decomposed into the groups in terms of their contri-
butions to the latency itself. A group of tasks ΩL(τi,τo) affects (equivalently contributes to), an I/O latency L(τi, τo)
if

∀ τj ∈ ΩL(τi,τo) τj ∈ M(τi, τo) ∨ ∃τk ∈ M(τi, τo) | τj ∈ preds(τk). (8)

ΩL(τi,τo) is the set of all tasks which contributes to L(τi, τo).
By extension, a partition Gi affects the latency L(τi, τo) if ∃τj ∈ Gi such that τj affects L(τi, τo). Then, given

GL(τi,τo) = {G1,L(τi,τo), . . . ,Gn,L(τi,τo)} ⊆ G the subset of partitions affecting the latency L(τi, τo), it is possible to write
L(τi, τo) as the combination of partition contributions, LG1,L(τi,τo)

+LG2,L(τi,τo)
+ . . .+LGn,L(τi,τo)

. The latency constraint
becomes

LG1,L(τi,τo)
+ LG2,L(τi,τo)

+ . . .+ LGn,L(τi,τo)
≤ lL(τi,τo). (9)

5.1 Latencies with Independences

The independence grouping policy modifies I/O latency. With an independence task set partitioning I, it is possi-
ble to identify the subset of independence groups affecting L(τi, τo), IL(τi,τo) = {I1,L(τi,τo), I2,L(τi,τo), . . . , In,L(τi,τo)},
IL(τi,τo) ⊆ I. With Equation (9) applied to independence groups, L(τi, τo) ≤ lL(τi,τo) can decomposed into its contri-
bution from IL(τi,τo),

LI1,L(τi,τo)
+ LI2,L(τi,τo)

+ . . .+ LIn,L(τi,τo)
≤ lL(τi,τo). (10)

The independence introduces pessimism in the end-to-end timing requirement which results into larger then or equal
to latencies, LI1,L(τi,τo)

+ LI2,L(τi,τo)
+ . . .+ LIn,L(τi,τo)

≤ lL(τi,τo) ≤ L(τi, τo).

Theorem 5.1 (Independence Scheduling). Given a task set Γ = {. . . , τi, . . . , τo, . . .} with precedences described by G,
partitioned into independence groups and constrained by I/O latencies L, each of them (L(τi, τo) ≤ lL(τi,τo)) involving
the independence groups {I1,L(τi,τo), . . . , In,L(τi,τo)}. Γ is schedulable if ∀ L(τi, τo) ∈ L

LI1,L(τi,τo)
+ LI2,L(τi,τo)

+ . . .+ LIn,L(τi,τo)
≤ lL(τi,τo). (11)

Proof. Equation (10) applied to {I1,L(τi,τo), I2,L(τi,τo), . . . In,L(τi,τo)} defines a compositional relationship to the I/O
latency L(τi, τo). A sufficient condition to the schedulability is that the latency bound is verified. Thus the theorem
follow for every L(τi, τo) ∈ L.

Lemma 5.2 (Independence Latency). With and independence grouping I and for a latency L(τi, τo), IL(τi,τo) =
{I1,L(τi,τo), I2,L(τi,τo), . . . , In,L(τi,τo)} ⊆ I is the set of groups affecting L(τi, τo). A sufficient condition to the la-
tency constraints L(τi, τo) ≤ lL(τi,τo) is that l1,L(τi,τo) + l2,L(τi,τo) + . . . + ln,L(τi,τo) ≤ lL(τi,τo), with lh,L(τi,τo) =
max(τs,τr)∈Ih,L(τi,τo)

{ar + Cr − as}.

7

Proof. It is possible to decompose L(τi, τo) into the effects of the composing independence groups Ih,L(τi,τo), Equa-
tion (9). The worst-case latency contribution from each Ih,L(τi,τo) ∈ IL(τi,τo) is lIh,L(τi,τo)

= max(τs,τr)∈Ih,L(τi,τo)
{ar +

Cr − as}. It is then ao + Co − ai ≤ l1,L(τi,τo) + l2,L(τi,τo) + . . .+ ln,L(τi,τo), and the latency condition can be verified if
ao + Co − ai ≤ l1,L(τi,τo) + l2,L(τi,τo) + . . . + ln,L(τi,τo) ≤ lL(τi,τo). The lemma comes as an upper bound to the group
latency constraint.

In terms of contributions to the latency we can differentiate independence groups according to their role with the I/O
latency itself. For each L(τi, τo) there is a) an input group II,L(τi,τo), containing the latency input task τi, b) an output
group IO,L(τi,τo), as the group which includes the output task τo of the latency, c) intermediate groups Iint,L(τi,τo), as
those groups which have tasks belonging to the I/O latency but neither the input task nor the output task. Each group
contributes differently to the latency.

Inputs Given the input task τi for the latency constraint L(τi, τo) ≤ lL(τi,τo), the latency for the input group II,L(τi,τo)

depends on the task activation ai which is driven by the tasks belonging to II,L(τi,τo) and executed before τi. With
CI,L(τi,τo) the total computation time of II,L(τi,τo), CI,L(τi,τo) =

∑

τh∈II,L(τi,τo)
Ch (considering tasks inside a group

executed consecutively), the latency of that group is LI,L(τi,τo) = aI,L(τi,τo)+CI,L(τi,τo)−ai with aI,L(τi,τo) the activation
of the first task of II,L(τi,τo) scheduled. Thus the latency constraint

aI,L(τi,τo) + CI,L(τi,τo) − ai ≤ lI,L(τi,τo), (12)

where the bound lI,L(τi,τo) could be computed as in Lemma 5.2 or imposed. In its generic form, CI,L(τi,τo) can include
the activation of the tasks, but both CI,L(τi,τo) and aI,L(τi,τo) are fixed and representable as ETI,L(τi,τo) = CI,L(τi,τo) +
aI,L(τi,τo). The only parameter that can change is the task τi activation.

ai
def
=

{

0 if τi scheduled first
∑

τh∈II,L(τi,τo)\{τi} | (τh before τi)
Ch + δI,L(τi,τo) otherwise, (13)

with δI,L(τi,τo) the time due to possible intermediate task activations. It includes in the latency definition the non-
consecutive task execution: the idle time which could exist. ai ≥

∑

τh∈II,L(τi,τo)\{τi} | τh executed before τi
Ch. Equa-

tion (12) gives a bound to τi activations, ai ≥ ETI,L(τi,τo)− lI,L(τi,τo) which limits the activation time of τi for a feasible
intra-group ordering: a) if ETI,L(τi,τo) ≤ lI,L(τi,τo) then ai does not have constraints, b) else, ETI,L(τi,τo) > lI,L(τi,τo),
ai have to be larger or equal to ETI,L(τi,τo) − lI,L(τi,τo). Playing with the intra-group task ordering it is possible to
find the scheduling which optimize both the single latency constraint L(τi, τo) (trivial problem) and the whole latency
constraint set L.

Outputs Given an output task τo for the latency L(τi, τo), within the output group IO,L(τi,τo) the latency is LIO,L(τi,τo)
=

ao + Co. The contribution to the activation of τo is limited to the tasks belonging to IO,L(τi,τo) executed before τo,

ao
def
=

{

0 if τo scheduled first
∑

τh∈Ik,L(τi,τo)\{τo} | (τh before τo)
Ch + δO,L(τi,τo) otherwise. (14)

δI,L(τi,τo) is to take into account idle time on the scheduling of IO,L(τi,τo) tasks. It is ao ≥
∑

τh∈Ik,L(τi,τo)\{τo} | τh before τo
Ch.

Input-Outputs A particolar condition is when a group contains both the input and the output tasks of a latency
L(τi, τo); we call it input-output group IIO,L(τi,τo). In this case, IIO,L(τi,τo) is the only group affecting L(τi, τo). The
latency contribution of IIO,L(τi,τo) (which is the only contribution) depends on the relative task execution order within
it, in particular from those tasks executed after τi and before τo.

aoCo − ai
def
=

{

Ci + Co if τonext to τi
Ci + Co +

∑

τh∈IIO,L(τi,τo)\{τij ,τo} | (τh after τi∧τh before τo)
Ch + δIO,L(τi,τo) otherwise, (15)

and δIO,L(τi,τo) account for the idle timethat can occur while scheduling the tasks in between τi and τo. The constraint
aoCo − ai ≤ lL(τi,τo) depends on both ao and ai. To accomplish the latency constraint it is sufficient to play with the
relative position of τi and τo within IIO,L(τi,τo).

Intermediate An intermediate independence group Iint,L(τi,τo) to an I/O latency contribute with a constant value
Lint,L(τi,τo) =

∑

τh∈Iint,L(τi,τo)
Ch.

With Equations (9), (12), (13), (14) and (15) we have decomposed complex latency relations into independence
groups. Combining timing conditions from different I/O latencies it would be possible to build an optimization problem
acting on intra-group ordering only. For space reasons we could not describe the similar latency conditions for the
dependence grouping. Nonetheless, it is worthy to note that they have been derived as inter-group scheduling relations
only.

8

6 Case Studies

We applied the grouping algorithms to several case studies, all of which are derived from avionic applications. Table 1
shows the results. The columns “Tasks” and “Precs” display the number of tasks and precedences, respectively. Column
“Dep.” shows the number of groups created by the dependent grouping algorithm, while the columns “Indep. F” and
“Indep. B” refer to the forward and backward independence grouping algorithms.

Table 1: Case studies grouping results
Name Tasks Precs. Dep. Indep. F Indep. B

FAS 19 21 12 7 7
FAS complete 236 329 183 12 12
Asm 14 18 8 7 7
Asm complete 375 428 368 6 6
CDV mono 311 49 310 2 2
CDV 511 396 505 3 3
Master 399 305 94 74 74

Table 2: FAS task set configuration
Task Exec. time Period Task Exec. time Period

gps0 10 1000 TM TC127 100 1000
gyro0 10 1000 gnc0 10 1000
str0 10 1000 GNC DS111 300 1000
GPS Acq85 30 1000 pde0 10 1000
Gyro Acq79 30 1000 tm0 10 1000
str Acq90 30 1000 PWS122 30 1000
FDIR100 pws0 10 1000
tc0 10 1000 SGS119 30 1000
GNC US109 210 1000 SGS0 30 1000
PDE117 30 1000

For all case studies, the dependent grouping algorithm creates more groups than the independence grouping algo-
rithms. Apparently, task chains are rather short, such that the dependent grouping algorithm can group only few tasks
together. In contrast, there are relatively few independence groups. An exception to this is the case study “Master”,
where the number of dependent and independence groups is relatively balanced. A closer look on the structure of the
task graphs revealed that in most cases, the task graph consists of several unconnected components. An effect of this
is that tasks of these components end up in the same independence groups, which lowers the number of these groups.
Future work could take unconnected components into account to increase the number of independence groups.

With the FAS benchmark we do further investigation of our grouping framework. Figure 3(a) describes the graph
representation for the precedence constraints of the FAS task set. Figure 3(b), and 3(c) are respectively the independence
group and the dependence group classification for those tasks. The FAS benchmark we analyze is a modified version
with mono-rate tasks; the task period has been set to 1000ms and the execution times, expressed in milliseconds, have
been set to fit into a 1000ms period, Table 2. To evaluate the impact of grouping onto I/O latencies, we have defined

GNC_DS111

P W S 1 2 2 SGS119

t m 0

s t r 0

Str_Acq90

PDE117

pde0

Gyro_Acq79

GNC_US109

FDIR100

gyro0gps0

GPS_Acq85

gnc0

TM_TC127

tc0

p w s 0 sgs0

(a) Functional graph representa-
tion

GNC_DS111

P W S 1 2 2SGS119

t m 0

s t r 0

Str_Acq90

PDE117

pde0

Gyro_Acq79

GNC_US109

FDIR100

gyro0gps0

GPS_Acq85

gnc0

TM_TC127

tc0

p w s 0sgs0

(b) Independence grouping with
the forward algorithm

GNC_DS111

P W S 1 2 2 SGS119

t m 0

s t r 0

Str_Acq90

PDE117

pde0

Gyro_Acq79

GNC_US109

FDIR100

gyro0gps0

GPS_Acq85

gnc0

TM_TC127

tc0

p w s 0 sgs0

(c) Dependence grouping

Figure 3: Functional graph and grouping to the FAS benchmark.

two I/O latencies for the FAS benchmark. The first, L(gps0, gnc0) with gps0 the input task and gnc0 the output task,
and the second L(str0, pws0) with str0 the input task and pws0 the output task. By defining the optimal latency as
the smallest latency, we can have an optimization problem where all the possible task scheduling are verified looking
for the smallest I/O latency. We consider first the case where single latencies are applied, then we combine the two
latencies into the same optimization problem.

Without grouping, the optimal latencies are respectively 275ms and 605ms for L(gps0, gnc0) and L(str0, pws0). In
case of independence grouping (with the forward grouping algorithm) the optimal L(gps0, gnc0) latency become 465ms,
while for the L(str0, pws0) is 845ms. In case of dependence grouping the optimal L(gps0, gnc0) latency stays 275ms
(as the no-grouping case), while for the L(str0, pws0) it is 835ms.

Combining the two latencies, we could look for the maximum between them, max{L(gps0, gnc0), L(str0, pws0)}.
The latencies results into 615ms with no grouping applied, 855ms with the independence grouping (forward indepen-
dence grouping) and 835ms with the dependence grouping. Results are slightly larger than the single latency case, due
to the combination of the two requirements.

As we saw, the grouping reduces the scheduling possibilities. This introduces some pessimism into the task timing

9

constraints. The pessimism depends on the case study considered, but also on the latencies applied. On the other
hand, with the grouping the scheduling complexity is drastically reduced since the number of elements to be scheduled
is smaller than the case with no grouping, Table 1.

In future works we will apply latency constraints to better explore Equations (13), (14) and (15) as constraints on
the task activations. The relations with the task activations within groups will be explored.

7 Conclusions

In this paper we introduced the notion of grouping to classify tasks with respect to their functional requirements. We
proposed two different grouping policies according to the notion of functional dependence and functional independence.
The grouping has been applied to the scheduling problem to combine both the timing constraints and the functional
classification.

As an initial work, the grouping scheduling approach succeeded in decomposing the task scheduling problem into
components (groups). The I/O latencies have been also decomposed into groups allowing to better characterize how
they vary within the groups. We have also formalized the potentiality of the task grouping in reducing the complexity
of the scheduling problem from the NP-hardness of realistic systems to a component-based problem.

In future stages, we intend to apply the grouping and the decomposed latencies to a structured sensitivity analysis
on the activation parameters a. This to provide an useful feedback at system design time and also to compensate part
of the pessimism introduced with the grouping. Extensions to this work will also release some of the assumptions made
i.e., non preemptability or mono-rate, to generalize the grouping approach.

References

[1] J. A. Stankovic, “Misconceptions about real-time computing: A serious problem for next-generation systems,” Computer, vol. 21, no. 10,
pp. 10–19, 1988.

[2] J. Xu and D. Parnas, “Scheduling processes with release times, deadlines, precedence and exclusion relations,” IEEE Trans. Softw.
Eng., vol. 16, pp. 360–369, March 1990.

[3] E. Grolleau and A. Choquet-Geniet, “Off-line computation of real-time schedules by means of petri nets,” in Workshop On Discrete
Event Systems, WODES2000, ser. Discrete Event Systems: Analysis and Control. Ghent, Belgium: Kluwer Academic Publishers,
2000, pp. 309–316.

[4] C. Ekelin, “An optimization framework for scheduling of embedded real-time systems,” Ph.D. dissertation, Chalmers University of
Technology, 2004.

[5] H. Chetto, M. Silly, and T. Bouchentouf, “Dynamic scheduling of real-time tasks under precedence constraints,” Real-Time Systems,
vol. 2, no. 3, pp. 181–194, 1990.

[6] M. Spuri and J. Stankovic, “How to integrate precedence constraints and shared resources in real-time scheduling,” Computers, IEEE
Transactions on, vol. 43, no. 12, pp. 1407–1412, 1994.

[7] S. Goddard, “Analyzing the real-time properties of a dataflow execution paradigm using a synthetic aperture radar application,” in 3rd
IEEE Real-Time Technology and Applications Symposium (RTAS). IEEE Computer Society, 1997, pp. 60–71.

[8] S. Goddard and K. Jeffay, “Managing latency and buffer requirements in processing graph chains,” Comput. J., vol. 44, no. 6, pp.
486–503, 2001.

[9] L. Cucu-Grosjean and Y. Sorel, “Non-preemptive scheduling algorithms and schedulability conditions for real-time systems with prece-
dence and latency constraints,” INRIA Rocquencourt, Tech. Rep. 5403, December 2004.

[10] L. Cucu, R. Kocik, and Y. Sorel, “Real-time scheduling for systems with precedence, periodicity and latency constraints,” in Proceedings
of Real-time and Embedded Systems, 2002, pp. 26–28.

[11] P. M. Yomsi and Y. Sorel, “Non-schedulability conditions for off-line scheduling of real-time systems subject to precedence and strict
periodicity constraints,” in Proceedings of 11th IEEE International Conference on Emerging Technologies and Factory Automation,
(ETFA), 2006.

[12] R. K. Clark, “Scheduling dependent real-time activities,” School of Computer Science, Carnegie Mellon University, Tech. Rep., 1990.

[13] M. D. Natale, M. Di, N. John, and J. A. Stankovic, “Dynamic end-to-end guarantees in distributed real time systems,” in Proceedings
of RealTime System Symposium, (RTSS), 1994.

[14] L. Santinelli, W. Puffitsch, C. Pagetti, and F. Boniol, “Scheduling with functional and non-functional requirements: the sub-functional
approach,” in WiP session at 25th Euromicro Conference on Real-Time Systems (ECRTS), 2013.

[15] G. Behrmann, K. G. Larsen, and J. I. Rasmussen, “Optimal scheduling using priced timed automata,” SIGMETRICS Perform. Eval.
Rev., vol. 32, pp. 34–40, March 2005.

[16] S. Baruah and J. Goossens, “Scheduling real-time tasks: Algorithms and complexity,” Handbook of Scheduling: Algorithms, Models,
and Performance Analysis, 2003.

[17] F. Boniol, H. Cassé, E. Noulard, and C. Pagetti, “Deterministic execution model on cots hardware,” in Proceedings of the 25th
international conference on Architecture of Computing Systems, ser. ARCS’12, 2012, pp. 98–110.

[18] M. Lauer, J. Ermont, F. Boniol, and C. Pagetti, “Latency and freshness analysis on ima systems,” in Emerging Technologies Factory
Automation (ETFA), 2011 IEEE 16th Conference on, Sept., pp. 1–8.

10

