P. C. Costa, K. B. Laskey, E. Blasch, and A. Jousselme, Towards Unbiased Evaluation of Uncertainty Reasoning: The URREF Ontology, Int. Conf. on Info Fusion, 2012.

B. Kahler and E. Blasch, Predicted radar/optical feature fusion gains for target identification, Proceedings of the IEEE 2010 National Aerospace & Electronics Conference, 2010.
DOI : 10.1109/NAECON.2010.5712986

E. Blasch, I. Kadar, J. Salerno, M. M. Kokar, and S. Das, Issues and Challenges in Situation Assessment (Level 2 Fusion), J. of Advances in Information Fusion, vol.1, issue.2, pp.122-139, 2006.

R. Hummel and M. S. Landy, A statistical viewpoint on the theory of evidence, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.10, issue.2, pp.235-247, 1988.
DOI : 10.1109/34.3885

A. J?sang, P. C. Costa, and E. Blasch, Determining Model Correctness for Situations of Belief Fusion, Int'l Conf. on Info Fusion, 2013.

J. Dezert, J. Tacnet, M. Batton-hubert, and F. Smarandache, Multi- Criteria decision making based on DSmT-AHP, 2010.
URL : https://hal.archives-ouvertes.fr/emse-01122751

P. Smets and R. Kennes, The transferable belief model, Artificial Intelligence, vol.66, issue.2, pp.191-243, 1994.
DOI : 10.1016/0004-3702(94)90026-4

URL : https://hal.archives-ouvertes.fr/hal-01185821

J. Dezert, D. Han, Z. Liu, and J. Tacnet, Hierarchical DSmP transformation for decision-making under uncertainty, Int. Conf. on Information Fusion, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00720442

E. Blasch and &. S. Plano, Level 5: user refinement to aid the fusion process, Multisensor, Multisource Information Fusion: Architectures, Algorithms, and Applications 2003, 2003.
DOI : 10.1117/12.486899

E. Blasch and S. Plano, DFIG Level 5 (User Refinement) issues supporting Situational Assessment Reasoning, Int. Conf. on Information Fusion, 2005.
DOI : 10.1109/icif.2005.1591830

C. Yang and E. Blasch, Fusion of Tracks with Road Constraints, J. of. Advances in Information Fusion, vol.3, issue.1, pp.14-32, 2008.

G. Chen, D. Shen, C. Kwan, and J. Cruz, Game Theoretic Approach to Threat Prediction and Situation Awareness, 2006 9th International Conference on Information Fusion, pp.1-14, 2007.
DOI : 10.1109/ICIF.2006.301670

E. P. Blasch, E. Bosse, and D. Lambert, High-Level Information Fusion Management and Systems Design

P. Foo and G. Ng, High-Level Information Fusion: An Overview, J. Adv. Information Fusion, vol.8, issue.1, 2013.

S. K. Rogers, M. Kabrisky, K. Bauer, and M. Oxley, Computing Machinery and Intelligence Amplification, Computational Intelligence: The Experts Speak, pp.25-44, 2003.

S. K. Rogers, The life and death of ATR/sensor fusion and the hope for resurrection, Automatic Target Recognition XVIII, 2008.
DOI : 10.1117/12.783012

E. Blasch and P. Hanselman, Information fusion for information superiority, Proceedings of the IEEE 2000 National Aerospace and Electronics Conference. NAECON 2000. Engineering Tomorrow (Cat. No.00CH37093), 2000.
DOI : 10.1109/NAECON.2000.894923

E. P. Blasch, Assembling a distributed fused information-based human-computer cognitive decision making tool, IEEE Aerospace and Electronic Systems Magazine, vol.15, issue.5, pp.11-17, 2000.
DOI : 10.1109/62.843110

E. Blasch and S. Plano, <title>JDL level 5 fusion model: user refinement issues and applications in group tracking</title>, Signal Processing, Sensor Fusion, and Target Recognition XI, p.4729, 2002.
DOI : 10.1117/12.477612

A. Panasyuk, Extraction of Semantic Activities from Twitter Data, Semantic Tech. for Intelligence, Defense, and Security, 2013.

C. Yang and E. Blasch, Kalman Filtering with Nonlinear State Constraints, 2006 9th International Conference on Information Fusion, pp.70-84, 2009.
DOI : 10.1109/ICIF.2006.301553

URL : http://www.dtic.mil/get-tr-doc/pdf?AD=ADA521137

A. J?sang, The Consensus operator for combining beliefs, Artificial Intelligence, 2002.

P. C. Costa and K. B. Laskey, PR-Owl: A framework for probabilistic ontologies, Frontiers in Artificial Intelligence, 2006.

E. Blasch, P. Valin, and E. Bossé, Measures of effectiveness for high-level fusion, 2010 13th International Conference on Information Fusion, 2010.
DOI : 10.1109/ICIF.2010.5711858

E. Blasch, P. C. Costa, K. B. Laskey, D. Stampouli, G. W. Ng et al., Issues of Uncertainty Analysis in High- Level Information Fusion ? Fusion2012 Panel Discussion, Int. Conf. on Info Fusion, 2012.

G. Jousselme and . Powell, Uncertainty Evaluation: Current Status and Major Challenges ? Fusion2012 Panel Discussion, Int. Conf. on Info Fusion, 2012.

E. Blasch and M. Pribilski, Fusion Metrics for Dynamic Situation Analysis, Proc. of SPIE, vol.5429, 2004.

E. Blasch, I. Kadar, J. Salerno, and M. M. Kokar, <title>Issues and challenges of knowledge representation and reasoning methods in situation assessment (Level 2 Fusion)</title>, Signal Processing, Sensor Fusion, and Target Recognition XV, 2006.
DOI : 10.1117/12.669779

T. Schuck and E. P. Blasch, Description of the Choquet Integral for tactical knowledge representation, 2010 13th International Conference on Information Fusion, 2010.
DOI : 10.1109/ICIF.2010.5711844

J. Debenham, A Logic of Knowledge Integrity, 2007.

J. D. Lee and N. Moray, Trust, self-confidence, and operators' adaptation to automation, International Journal of Human-Computer Studies, vol.40, issue.1, 1994.
DOI : 10.1006/ijhc.1994.1007

E. Blasch, S. Nashif, and . Hariri, Static Versus Dynamic Data Information Fusion Analysis Using DDDAS for Cyber Security Trust, International Conference on Computational Science, 2014.
DOI : 10.1016/j.procs.2014.05.117

URL : http://doi.org/10.1016/j.procs.2014.05.117

H. Aras and C. Beckstein, Uncertainty and Trust, Dagstuhl Seminar Proceedings 08421, Uncertainty Management in Information Systems, 2009.

A. , J. , and S. L. Presti, Analyzing the relationship between risk and trust, International Conference on Trust Management, 2004.

D. Wang, T. Abdelzaher, and L. Kaplan, On truth discovery in social sensing, Proceedings of the 11th international conference on Information Processing in Sensor Networks, IPSN '12, 2011.
DOI : 10.1145/2185677.2185737

D. Wang, T. Abdelzaher, L. Kaplan, and C. Aggarwal, On quantifying the accuracy of maximum likelihood estimation of participant reliability in social sensing, DMSN, pp.7-12, 2011.

E. Onal, J. Schaffer, and J. O. Donovan, Decision-making in abstract trust games: A user interface perspective, 2014 IEEE International Inter-Disciplinary Conference on Cognitive Methods in Situation Awareness and Decision Support (CogSIMA), 2014.
DOI : 10.1109/CogSIMA.2014.6816535

D. Shen and G. Chen, A trust-based sensor allocation algorithm in cooperative space search problems, Sensors and Systems for Space Applications IV, 2011.
DOI : 10.1117/12.882904

E. Blasch and O. Kessler, Information Fusion Management and Enterprise Processing, IEEE Nat. Aerospace and Elect. Conf, 2012.

K. Krug, The relationship between confidence and accuracy: current thoughts of the literature and a new area of research, Applied Psychology in Criminal Justice, vol.3, issue.1, 2007.

A. Koriat, The self-consistency model of subjective confidence., Psychological Review, vol.119, issue.1, pp.80-113, 2012.
DOI : 10.1037/a0025648

G. Gigerenzer, U. Hoffrage, and H. Kleinbolting, Probabilistic mental models: A Brunswikian theory of confidence., Psychological Review, vol.98, issue.4, pp.506-538, 1991.
DOI : 10.1037/0033-295X.98.4.506

F. Smarandache and J. Dezert, On the consistency of PCR6 with the averaging rule and its application to probability estimation, Int'l Conf. on Information Fusion, 2013.

A. Wald, Sequential Tests of Statistical Hypotheses, The Annals of Mathematical Statistics, vol.16, issue.2, pp.117-186, 1945.
DOI : 10.1214/aoms/1177731118

E. Blasch and R. Broussard, <title>Physiologically motivated computational visual target recognition beta selection</title>, Applications and Science of Computational Intelligence III, 2000.
DOI : 10.1117/12.380598

E. Blasch, R. Breton, and P. Valin, Information fusion measures of effectiveness (MOE) for decision support, Signal Processing, Sensor Fusion, and Target Recognition XX, 2011.
DOI : 10.1117/12.883988

T. J. Pleskac and J. B. Busemeyer, Two-stage dynamic signal detection: A theory of choice, decision time, and confidence., Psychological Review, vol.117, issue.3, pp.864-901, 2010.
DOI : 10.1037/a0019737

A. Jøsang and R. Hankin, Interpretation and Fusion of Hyper Opinions in Subjective Logic, Int'l Conf. on Information Fusion, 2012.

A. Josang, Prospectives for Modeling Trust in Information Security, Information Security and Privacy, 1997.

E. Blasch and R. Breton, User Information Fusion Decision Making Analysis with the C-OODA Model, Int. Conf. on Info Fusion, 2011.

E. Blasch and G. Seetharaman, Dynamic Data Driven Applications Systems (DDDAS) modeling for automatic target recognition, Automatic Target Recognition XXIII, 2013.
DOI : 10.1117/12.2016338

E. Blasch and G. Seetharaman, Dynamic Data Driven Applications System Concept for Information Fusion, International Conference on Computational Science, 2013. (ICCS13), Procedia Computer Science, 1999.
DOI : 10.1016/j.procs.2013.05.369

URL : http://doi.org/10.1016/j.procs.2013.05.369

B. Kahler and E. Blasch, Decision-Level Fusion Performance Improvement from Enhanced HRR Radar Clutter Suppression, J. of. Advances in Information Fusion, vol.6, issue.2, 2011.
DOI : 10.1109/naecon.2009.5426625

E. Blasch, J. Dezert, and . Pannetier, Overview of Dempster-Shafer and belief function tracking methods, Signal Processing, Sensor Fusion, and Target Recognition XXII, 2013.
DOI : 10.1117/12.2016326