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Abstract—This paper deals with the interactive design of
generic classi�ers for aerial images. In many real-life cases,
object detectors that work are not available, due to a new
geographical context or a need for a type of object unseen
before. We propose an approach for on-line learning of such
detectors using user interactions. Variants of gradient boosting
and support-vector machine classi�cation are proposed to cope
with the problems raised by interactivity: unbalanced and par-
tially mislabeled training data. We assess our framework for
various visual classes (buildings, vegetation, cars, visual changes)
on challenging data corresponding to several applications (SAR
or optical sensors at various resolutions). We show that our model
and algorithms outperform several state-of-the-art baselines for
feature extraction and learning in remote sensing.

I. I NTRODUCTION

Satellite and aerial images are now widely produced and
(thanks to popular web applications) commonly used by every-
one for exploration and searching places. Yet the information
usually comes from existing maps and manually-added annota-
tions, while today's high resolution would allow to extract lots
of visual information. To that end, detection of visual patterns
and classi�cation in remote sensing has been an active �eld of
research for many years. The global structure of the resulting
algorithms consists in extracting relevant features that can be
thresholded (for a few examples: the fractal error [1], the
distribution of linear segments [2] or texture-based conditional
random �elds [3], [4]) or used to feed a machine learning
algorithm that delivers the classi�cation (like Support Vector
Machines - SVMs - [5]).

But out of the lab, for practical situations, people often miss
the right classi�er for their purpose. For example, for disasters
or crisis management, even with philanthropic procedures like
the International Charter on Space and Major Disasters, the
best image is the one that is available when the problem occurs.
A solution to this problem is interactive learning: the user
de�nes by himself the pattern of interest and learns it on the
image to classify. The system in [6] keeps the complete image
context visible, then learns the searched concept by using only
a few selected pixels. Recently, pixel-based approaches have
led to successful developments thanks to active learning [7],
[8], especially with multi-spectral data. Several approaches that
take their inspiration from content-based image retrieval have
also been proposed: they segment images to small patches and
display a ranked list of patches that users have to tag as good or
bad. PicSOM [9] is based on self-organizing maps, VisiMine
[10] on naive Bayes classi�ers and Ikona [11] uses SVMs for
relevance feedback.

Our approach takes the best of both worlds: it combines an
intuitive selection of patches in their geographic context and a
fast learning of classi�ers of visual patterns. It allows to design
generic detectors of objects or visual concepts that can be
re�ned by relevance feedback, and thus extends the approach
of [12]. This paper is organized as follows. In section II we
de�ne the principles of the approach and detail the learning
algorithms. In section III we present results that assess the
choices we made. In section IV we analyze the genericness
of our approach and present some extensions that lead to
practical applications in challenging conditions, before ending
by concluding remarks in section V.

II. I NTERACTIVE LEARNING

A. Training sample collection

Fig. 1. On-line learning by analyst's selection of samples of what is looking
for (green rectangles) and negative samples (red rectangles). These regions are
segmented in small patches, from which meaningful features are extracted to
constitute the training dataset. Detection results in Fig. 7.

Thanks to the development of web mapping applications
like google maps and others, people are now used to geo-
graphic exploration of aerial image. Our interactive learning
process follows this trend: the image analyst selects areas
containing the object of interest and areas that do not contain
it in a Geographic Information System (GIS) (cf. Fig. 1).
First, these areas are segmented in small overlapping patches,
thus allowing to harvest a large quantity of training samples.
Second, patches are indexed by features that describe their
content, typicallyd-dimensional vectors denoted byxk . Along
with their associated label, they constitute the training set
f (xk ; yk )1� k � N ; xk 2 Rd; yk 2 f� 1; 1gg of the learning
algorithms.



B. Problems raised by interactivity

The aim of supervised learning is to build a function
f : Rd ! f� 1; 1g able to predict the label of an unknown
descriptorx. Practically, this is performed by minimizing the
misclassi�cation risk:

R(f ) =
1
N

X

k

L(yk ; f (xk )) (1)

where L(:; :) is a loss-function. The two major pitfalls of
building interactively the training set are:

� Mislabeled data. If the user assigns a wrong label
to a region or draws a region bigger than the target,
some sample labels are false, so the learning algorithm
should have good generalization properties.

� Unbalanced training sets. It is unlikely that the selec-
tion procedure yields in the same number of positive
and negative samples. Typically, negative samples are
much easier to �nd and should be over-numerous.

To deal with these problems, we present two approaches based
on state-of-the-art learning algorithms.

C. On-line Gradient Boosting

In a nutshell, boosting is a machine learning approach
which combines a set of weak classi�ersf m to build a good
(strong) meta-classi�erf :

f (x) =
MX

m =1

f m (x) (2)

After the initial Adaboostalgorithm [13], several variants
have been proposed, including theon-line boostingused in
[14] that offers an incremental mechanism. Boosting can be
considered as an approximate gradient descent in the weak-
classi�er space [15], and this result yields in a more generic
family of boosting methods namedon-line gradient-boost[16].
They build the strong classi�erf by minimizing the empirical
risk of Eq. 1 with loss functions chosen among:

exponential: exp(� yf (x))
logit: log(1 + exp( � yf (x)))

doomII: 1 � tanh(yf (x))
savage: ((1 + exp(2 yf (x))) 2) � 1

hinge: max(0; 1 � yf (x))

To deal with unbalanced data sets, we de�ne a new set of
loss functions that take into account the prior probabilities of
the training sets:

L (x)  
L (x)
p(y)

(3)

where priors are estimated by counting the number of positive
and negative samples in the training sets. This leads to weight
the classi�cation errors in the iterative minimization of risk
according to the priors of each class, such giving more
importance to under-represented samples.

Moreover, it has been shown [17] that non-convex loss
functions (such that the DoomII function) that are less sen-
sitive to mislabelings. Indeed, we show in Fig. 3 that such
functions are more able to tolerate mislabelings for an image
classi�cation task.

D. Support Vector Machines

SVMs are a popular kernel method for minimizing risk.
Even if incremental implementations of the SVM have been
proposed [18], we chose to bene�t from the fast computations
of an implementation on Graphics Process Unit (GPU) of the
SVM [19] to have tractable interaction times.

The soft margin principle allows some misclassi�cations
due to mislabeling by setting an appropriate cost parameter.
We handle unbalanced data in the same way as in boosting,
by weighting different costs for each class according to their
prior [20].

III. E XPERIMENTS AND RESULTS

A. Man-made structure dataset

Fig. 2. Patch examples for the man-made structure dataset used for ground-
truth: man-made structures (left) vs. clutter samples (right).

Man-made structure classi�cation has many useful applica-
tions in the remote sensing domain, from urbanism (for urban
development monitoring) to crisis management (for example
refugee camp detection after a disaster). We build a ground-
truth dataset by extracting 50x50 patches from a 2000x2000
QuickBird image (0.6m resolution) (cf. Fig. 2). It contains 615
positive samples (with houses and roads) and 1281 negative
samples (woods and mountains).

In the following, this dataset is used to compute Receiver
Operating Characteristic (ROC) curves for various classi�ers:
On-line Adaboost that is used as the baseline learning algo-
rithm (Adaboost was used with Histograms Of Gradients -
HOGs - for detection in remote sensing data in [14]), On-line
Gradient-Boost with the prior-included DoomII loss-function
and SVM with a Radial Basis Function (RBF) kernel. For
each classi�cation scheme, we average results on 5 runs of
cross-validation using roughly40% of the dataset for training
and testing on the remaining samples. For each descriptor, the
best parameters for each learning algorithm (i.e. number of
selectors and number of weak learners by selectors for the on-
line boosting, and kernel radius and cost for SVMs) are �ne
tuned by grid search.

B. Boosting classi�cation

To test the capacity to handle mislabeled data of the
different loss functions, we �ipped in various proportions the
class labels of the ground-truth data at training, and compared
the classi�cation rates. It appears on Fig. 3 that on-line gradient
boosting with non-convex functions perform better than others.
DoomII has the highest performance with a limited amount



Fig. 3. In�uence of training-data labeling errors on performances of on-line
gradient-boost with various loss functions.

Fig. 4. ROC curves for man-made structure classi�cation using On-line
Gradient-Boost with the prior-included Doom-II loss-function. The compari-
son of various features shows that HOG-based features outperform the others.

of labeling noise, while with an increased mislabeling level
(> 20% of mislabeled input) Savage performs better.

We then compared various image descriptors for a man-
made structure classi�cation task on the QuickBird dataset
de�ned in III-A. We used image features commonly used
in remote sensing for this task: Haralick features for texture
description [21], multi-scale Linear Binary Patterns (MSLBP)
[9], fractal error [1], HOGs [22], [9] and Markov Random
Fields (MRF) [4] that are statistics computed on HOGs.

Fig. 4 shows ROC curves for On-line Gradient-Boost with
the prior-included DoomII loss-function. It appears that all
HOG-based features or combination of features outperform the
other image descriptors, and that this learning scheme has the
potential to discriminate man-made objects in the image (Area
Under Curve - AUC - above90%).

Fig. 5. ROC curves for man-made structure classi�cation using SVM with a
Radial Basis Function. The comparison of various features shows that HOGs
outperform the others.

C. SVM classi�cation

In Fig 5, the image descriptors of section III-B are
compared using a SVM with a RBF kernel. HOGs are the
descriptors that allow to obtain the best classi�cation rates,
slightly in front of MRFs. Both perform far better than other
commonly used descriptors.

D. Overall classi�cation

The best combinations of descriptors and learning algo-
rithms are now compared. Table I compiles several perfor-
mance measures for the various combinations: accuracy rates
(both on the training and test data to emphasize over�tting
if any), F1 score for and Area Under Curve (AUC). All
algorithms obtain excellent results (AUC> 90%) for HOG-
based features and (narrowly) the fractal error, thus pointing

feature classif. train. accuracy test accuracy F1 AUC
MRF Grad-Boost 0.975 0.970 0.970 0.993
HOG Grad-Boost 0.956 0.950 0.915 0.980
HOG-MSLBP Grad-Boost 0.957 0.945 0.921 0.980
Fractal Grad-Boost 0.887 0.869 0.766 0.914
MSLBP Grad-Boost 0.744 0.700 0.546 0.739
Haralick Grad-Boost 0.797 0.784 0.661 0.856
Fractal-MSLBP Grad-Boost 0.536 0.536 0.803 0.715
Haralick-HOG Grad-Boost 0.794 0.784 0.661 0.860
MRF AdaBoost 0.960 0.962 0.954 0.990
HOG AdaBoost 0.914 0.910 0.886 0.962
HOG-MSLBP AdaBoost 0.933 0.923 0.892 0.966
Fractal AdaBoost 0.855 0.837 0.758 0.900
MSLBP AdaBoost 0.662 0.651 0.457 0.688
Haralick AdaBoost 0.754 0.745 0.599 0.590
MRF SVM 0.915 0.924 0.880 0.965
HOG SVM 0.990 0.977 0.965 0.997
HOG-MSLBP SVM 0.989 0.976 0.965 0.996
MRF-MSLBP SVM 0.934 0.927 0.886 0.961
Fractal SVM 0.997 0.884 0.830 0.940
Fractal-MSLBP SVM 0.998 0.885 0.824 0.925
MSLBP SVM 0.721 0.725 0.589 0.764

TABLE I. COMPARISON OF COMBINATIONS(FEATURE + CLASSIFYING
SCHEME) ACCORDING TO VARIOUS PERFORMANCE MEASURES:

ACCURACIES ON BOTH THE TRAINING AND TEST SETS, F1-SCORE, AREA
UNDER CURVE (AUC).



out obviously the feature of choice for describing the image
content. Moreover the combination of different features does
not usually improve the results, except for those which perform
poorly.

Both SVM and Gradient Boost perform signi�cantly better
than the standard adaboost, thus showing that the mechanisms
proposed in section II are ef�cient to control the unbalance
of the training sets. SVM with HOGs is the best combination
according to the AUC measure, while On-line Gradient Boost
with (HOG-based) MRFs obtains the best F1 score. The
signi�cant difference between training and test accuracies for
SVM with HOGs suggests that the SVM has slightly over�tted.
These results hint that gradient orientation statistics are the
most discriminant descriptor for discriminating structures in
aerial images.

Fig. 6 shows ROC curves for these combinations of de-
scriptors and learning algorithms, restrained to the upper-left
domain of the ROC-space for better distinguishing between
curves. When an operating point that tolerates a few false
alarms is chosen, both On-line Gradient Boost and SVM are
equivalent. However, SVMs allow to obtain a better precision
at near-zero fall-out.

Fig. 6. ROC curves for classi�cation using SVM and two �avors of Boosting
on most-informative features (zoom on the[0:75; 1] � [0:75; 1] domain for
better visualization).

IV. A NALYSIS

A. What kind of visual objects can be learned ?

The experiments showed that both proposed algorithms are
able to learn structures using HOGs, in conditions that are
similar to interactive learning (especially unbalanced datasets).
More precisely, regular man-made structures like buildings
can be retrieved in images of resolution from 20m to 0.1m,
as shown in [12]. Vegetation (such as tree foliage) can also
be detected in the same wide range of resolutions, thanks to
the isotropic nature of edge gradients in such patches. For
example, Fig 9 shows detection results for both objects in 0.2m
and 0.05m images.

With this framework, smaller objects like cars are de-
tectable in high-resolution only. Two mechanisms are useful:
more details to build the model, but also the fact that more
sample patches are collected, thus preventing over�tting on
singular data. Fig. 7 show car detections in an aerial image of
resolution 0.1m in a challenging urban environment. Training
areas were shown in Fig 1. The model was able to capture the
appearance of cars at various orientations, even if a few false
alarms appear on same-scale objects like air handler units.

In the following, we show that even more complex visual
objects can be learned: visual changes between images.

Fig. 7. Result of the interactive learning process of Fig. 1 with detections
of cars (blue squares) on an orthorecti�ed aerial image of resolution 0.1m.

B. Change detection

Change detection in SAR imagery consists in identifying
new buildings or destruction between two images at two
different dates [23]. Changes can be considered as visual
patterns and learned by our approach with only minor adapta-
tions [24]. Samples provided by the image analyst consist in
modi�ed areas (considered as positive samples) and areas that
remain visually similar. A pre-processing step is required to
generate a single image to compute features on: the Generalize-
Likelihood Ratio Test (GLRT) [25] provides an estimate of the
similarity of pixel distributions at pixel level. Then the learning
process is the same as before, patches are extracted from
the GLRT map and HOG features are computed to train the
classi�ers and thus estimate the spatial variations of changes.

This allows to distinguish between real changes of over-
ground objects and some regular changes that are due to the
geographic context (for instance the regular orientation of the
streets) or to data capture (for example the registration error
that always appears when viewing angles differ between the
two image captures). Fig. 8 shows the method can retrieve
various examples, such as new buildings or solar panels, even
in dense urban areas.






