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EDF Schedulability Analysis for an Extended
Timing De nition Language

Tomasz Kloda, Bruno d'Ausbourg, Luca Santinelli
ONERA Toulousehame.surname@onera.fr

Abstract—In a time-triggered system, activities like task releas- related factors such as processing speed, scheduling policy and
ing, operational mode switches, sensor readings and actuationscommunication protocols.
are all initiated at predetermined time instants. This paper
proposes an extension of the TDL (Timing De nition Language)

i L " release termination
time-triggered compositional framework, and presents, based on LET
the widely-applied methods, a condition for its schedulability.
The schedulability condition developed accounts for multiple Logical e [
concurrently executing modules, multiple operational modes Physical time
and mode switches. This way the system schedulability can be
guaranteed in any execution condition.
start suspend resume stop
input read output write

. INTRODUCTION Fig. 1: Logical Execution Time and its physical execution.

The development of embe_dde_d softw_are_is a highly platf_orm Timing De nition LanguageTDL) [9], [10], [26], a succes-
dependept process. Thg main dif culty lies in both formulating,, of Giotto, extends these concepts by allowing a decompo-
the functional speci cation of the system and correctly detejtion of large real-time systems into concurrently executing
mining its temporal behavior. While the former is facilitated by, sks sets named modules. Each TDL module runs in one oper-

high-level programming languages which abstract from maRyional mode at a time and can switch the modes independently
hardware aspects, getting the expected temporal characterigfigiher modules.

of the system involves usually much more efforts due to the
implementation of scheduling policies, synchronization, arfd Contributions
inter-processes communication protocols. While enabling timing and value predictability of pro-
To ef ciently manage these two crucial aspects for systegrams, Giotto and TDL can be further extended towards
correctness, time-triggered languages are devised for eimore exible and more realistic application modeling. In
bedded programming. These languages clearly separate §gh frameworks, the task LET and period are equal. In-
functional part of applications and their timing de nition.troducing a task model with an initial offset and the LET
Applications are specied through two descriptions: theipf a task terminating before the end of its period, is what
timing de nition, expressed in a time-triggered language, angle call Extended Timing De nition Languag@&-TDL). This
the functional code of tasks, expressed in any programmifgw E-TDL framework is presented in Section II.
language. At the nal stage, a dedicated compiler generates\ith E-TDL it is necessary to guarantee safe execution dur-
based on both descriptions, a ready-to-run executable foing multimodal operation inside every module. In section I-B
selected target-platform. This allows system designers aa@ cited some methods [27], [11] that can be adapted to
developers to focus on the functional aspects instead of i case in order to provide a schedulability condition. They
platform (hardware and operating system) without being igddress mainly event-triggered systems where the execution of
terested in where, how and when tasks are actually schedulgal:activity is triggered by the occurrence of an event whose
on platforms with a single or many CPUs, on platforms withrrival cannot be prede ned beforehand. Hence, it can be
a preemptive priority scheduling or not. supposed that in all modules the events which produce the
Time-triggered languages provide a programming abstrasiggest demand may arrive at the same time.
tion which was rstly introduced within the&Siotto program-  Time-triggered systems observe the state of the controlled
ming language [13]. Giotto assigns to each taskagical object only at speci ed time instants and initiate appropriate
Execution TimgLET) [14] which de nes the precise instantsactivities only at these instants. Time instants of tasks acti-
when the task exchanges data with the other tasks and withviégions are precisely de ned and it is known whether tasks
environment. A task is invoked and reads its input ports at thee launched simultaneously or not. Consequently it may be
beginning of its LET interval, then performs a computatioavoided to consider the synchronous case in analysis when it
whose results are made available on its output ports exadiywell known that this case never occurs.
at the end of the LET. Figure 1 shows the difference betweenCompositional analysis of such systems should be able
the logical and physical execution of a task. The observalite exhibit the relations between the start of the intervals in
temporal behavior of a task is independent from the platfordifferent modules and compare only these that can actually
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start at the same time. Therefore, the analyses that are well-=— LET, D, LET, D,

suited for event-triggered systems can be overestimating in the

time-triggered context. ’—‘C- h ’—‘C-
With this work we propose a suf cient condition for the ' :

e - ) G DT i dy l T d +1l G0
feasibility of an E-TDL system running on a single CPU under

the Earliest Deadline First (EDF) scheduling policy, [15]. In
Section IV we describe an offset analysis to identify feasible Fig. 2: E-TDL task model.
execution con gurations. In Section V we detalil the schedur

lability analysis which makes use of these con gurations ar]é]
applies to time-triggered E-TDL systems.

read write read write

e LET semantics imposes that a task reads periodically
inputs exactly when it is released and delivers its outputs
exactly at the end of its LET interval.

An E-TDL system consists of multiplmodulesrunning on
B. Related Work the same node. All modules of the system, referred hereafter

Many different protocols and methodologies attempting @s Modules, run concurrently sharing common processing
ensure the schedulability of a system across mode switctiggources. Each moduM; 2 Modules, from a scheduling
have been proposed in the literature. Protocols known B@int of view, is considered independent from the others.
synchronous|28], [2], [22] do not release new tasks until The basic fgnc_tlonal units of t|me—tr|g_gered languages are
all old mode tasks are completed. On the contrargyn- tasks that periodically execute some piece of code. Several
chronousprotocols, both forFixed Priority [29], [19], [22] Cconcurrent tasks may be grouped intomede Tasks are
and EDF [1], [7], de ne that during transition phase the lasinvoked within the mode at dec!are_d frequencies and can
activations of old mode tasks and new mode tasks can @ removed or added when switching from one mode to
executed simultaneously. In TDL and E-TDL, systems can Bg0ther. They communicate between them as well as with
composed of many modules and each module can undef§&'SOrs and actuators by means of ports. A mode is invoked
mode transitions that are de ned only in its local scope. F@Nd performs appropriate actions whenever the environment
systems designed in a compositional manner, an approdti? Some specic condition that should be handled by this
based on theeal-time calculus(RTC) [27] is developed in Particular operational mode [18]. With a mode, the set of
the work of Stoimenov et al. [25]. Fisher [11] proposedSks belonging tany is  [my]. ,

a schedulability test foEDF where the allocation of the At a time moduleM; execute_s one .O.f its modes fronl the
processing resources for each subsystem is represented bﬁd\" odes|M; ]. One of them is thenitial mode Minix =
explicit-deadline periodiadesource model [8] and sporadic nit [M;] andis e>_<ec.uted at fchg system begm_nmg. Each mode
task mode[17] is chosen. Servers can also dynamically ade:%k executes periodically within itsnode periodT[my]. A

their parameters of resource reservation. The feasibility undBPd€ Period is restrained to be a common multiple of the pe-
multi-moded resource reservation was studied by Santinelli"&ds of all tasks belonging to that modeim] = n H [my]

al. in [23]. withn 2 Ny, andH[my] £ lemfT,j ;2 [mglo.

Concerning the schedulability analysis of time-triggered 1he relative amount of time spent inside a maue is

systems the most signi cant contributions were made notagitMedmode time . and is set to 0 every time a mode
by Farcas [9] for TDL and Martinek in th&iotto in Ada[16] period begins. A module state can be described by the tuple

framework. The latter extends a Giotto's task model with th@nk; k). As mode time evol\{es With_in th? mode pgriod
T[m], appropriate actions like releasing or

notion of deadline but, since Giotto is not a compositionf;—l m‘S]'O_ k ‘
terminating tasks, are triggered.

framework, these results cannot be applied in this instance’ Whenever a condition change is detected in the environment

or inside the system, the current operating mode stops its

activities and a new mode starts instantaneously with a mode
An E-TDL periodic task ; = ( ;;Ci;LET;;T;) is char- time set to zero. These transitions are described in E-TDL by

acterized by an offset ;, a worst-case execution tin@, a mode switcheDuring execution of modmy the conditions to

Logical Execution TimeLET; (that gives its relative deadline switch from modemy to modemy.; are checked periodically

D;) and a periodr;. every mode switch periodls, (my; Mg+1 ). The instants at
The offset ; is restricted to be smaller than the periodvhich this check occurs are nametbde switch instantsms .

() i <T;) and LET; has to be large enough that taskf the conditions are satis ed, the mode switch can take place.

could be executed within iC; LET; T, ;. Moreover, Every mode switch periodsy (mi;Mk+1) is restricted to

the LET semantics does not allow the th instancej( 2 N, ) be a common multiple of all the task periodsrof:

of_ task starFed .in the ti.me .interva{(j 1Ti;jTi] to be Tsw (Mk; Mg+1) mod H[mM]=0"

nished after timejT;. Taking into account the above men- M2N.nT _ - T 1

tioned constraints, an E-TDL taskmay be implemented by a N2 Nii 0 Tow (Mic; Mice ) [mi]-(1)

periodic real-time task whose absolute releases and deadliBesh a choice of mode switch instants entails that a mode

are expressed respectivelyrgg = +(j 1)T; jT; and switch may occur only when no current mode task is running.

dj = +LETi+(j 1T |jTi. This way the new mode can be safely activated without any

Il. EXTENDED TDL M ODEL



delay. In future works we will enhance the mode switch withiDe nition 1 (Walk in a Mode-Switch Graph). A walk

E-TDL to let it safely happen befor&s, (my; Mk+1 ). w=((mg; 1);:::;(mp; ) of an E-TDL mode-switch
Within an actual modeny, the modes that may be startedyraph is a sequence af pairs wherems;:::;m, are the
at ¢ belong to the sestarting _modegmy; «) where subsequent modes in the mode-switch graph, and::

starting _modegmy; ) = are the numbers of:

f g._ o . k) . ) _ times the mode switch condition tmy.; has been
mk+.1 §9Tsw (Mi;Mis1) : « Mod Tew (Mi; Mis1) =09 [ checked iy (NUMbEr OfTcx (M Miss ) SpENt ML),
fmyj « = T[mglo: 2) fork<n:; 2N,

I1I. COMPOSITIONAL SCHEDULABILITY ANALYSIS FOR full periods T[m] spent inmy, for k = n; « 2 No.

E-TDL The rst modem; in the walkw is designated akead(w)
The presented E-TDL multi-mode model imposes on eaéind the last moden, as tail (w). The length of a walk
module of the system a set of possible execution pattemis= ((M1; 1);:::;(Mp; 1)) can be expressed as:
that can be observed during the system temporal evolution. In X0
what follows, the behavior of every module is characterized jwj = k Tsw (Mk; Mi+1) (4)
in time and the processing resources the module demands k=1

over time are quanti ed. This permits to provide a suf cientwe use Tqy (Mk; M+ ) interchangeably withT[my] for
condition for the schedulability of the whole system undet = n as there is no next mode in the walk
mode switches. Figure 4 illustrates how an execution trace in the interval
A. Execution Trace of an E-TDL Module [ts;t¢ ] can be .decpmposed. This trace enqapsylates awalk
. . between two time intervals. Both of these time intervals cover
In [9] Farcas proposed mode-switch grapiwhich allows an execution pattern within a single mode run. The interval

t(_)_exh|l_)|t all the modes of a given module and the tra_“fﬁat precedesv starts at timets and ends when the module
sitions it can undergo. Modes are represented by vertic ers modéheadw). The interval at the tail ofv starts in
and mode switches by directed edges in the graph. T detail (w) at mode time 0 and ends Bt

mode switch period labels the edge. More formally, the mode _ _

SWitCh graph Of a modu|$/|] 2 Modu|es describes the set De nition 2 (Module Execution Trace). An eXe-CUU(-)n trace
of switches that this module can undergo. Each mode switthan E-TDL moduleM; 2 Modules over a time interval
is dened as a tuple(My; Mys1 ; Tow(Mi; Mis1)) where [tsiti]is denoted by v, = (ms; s; Sw;my; 1) where
Mi; M1 2 Modes[M; ] and Tey (Mk; Mi+1 ) is the period ms 2 Modes[M; ] is the mode executing before waik
of the (my; Mk+1 ) mode switch. Restarting the same mode s:0< s T[mg] is the mode time related t,

after the end of its period can be also considered as a mode s: s o T[ms]is the mode time of modes,

switch (my; my; T[m]) and is so depicted on the graph. w is a walk in the mode-switch graph of modufg,
The mode switch graph can be de ned as the set: m¢ 2 Modes[M; ] is the mode executing after walk,
] ¢:0 ¢ <T[m;] is the mode time related t .
F(Mic Mice S Tow (Mi; Micr1)) J Mic; Misz 2 ModesIM{T ¢ has to be ful lled that:
9 k 1M+ 2 starting _modegmy; «)g (3) head(w) 2 starting _modegms; 9),
if tail (w) 6 mg,
Tima] Timy] then m; 2 starting _modeqtail (w); T[tail (w)]) and

tail (w) is executed at least one time at the endwof
tr ts= 2 s+jwi+ g,

Tsw (Ma; Mp)

— Short intervals, within which no more than one mode period
is executed, can be represented gs = (ms; s; 95550
T[m]
Tew (Ma; mMc) w = (( my;2); (my; 1); (m3; 0))
ms mj my ms = Mg ‘
Fig. 3: Example of a mode-switch graph. 0 sTa(mam) 0 Ta(mimy) 2 Taw(Mimg) Ta(mzims = m) i T[ma]
tt

ts
During its execution, a module can remain in the current
mode or switch to one of its possible successive modes. The
behavior of a module can be described by a walk that travels
through its mode-switch graph, visiting modes at multipleBhe length of an execution tracey; is given byj w,;j =
of mode switch periods, jumping to another modes whenevel <+ jwj+ ¢, and mode as well as mode time in which
there is a need for changing mode. it starts are de ned astart( ;) =(ms; s).

Fig. 4: Example of a module execution trace



When a moduleM; runs a walk, it crosses moded; can of demand function. Only the higest demand function value
stay in any modeny before startingny., for any time that of these traces can be considered in the further analysis.
:S a rﬂultflple of”zhe mct;de switch pgr'oﬂwf,mk;m“l )t.)'Th('a De nition 5 (Maximal Demand Function). For
re1ngt 3 awa hcan 'edex.pressed asa |nr(]aar]c<;om ";at'onrﬂ dule Mj 2 Modules maximal demand function
the modes switch periods it spends in each of its modes. maxd v, (Ms; «;) denotes the largest value of demand

Deniton 3 (Path in a Mode-Switch Graph). A function that characterizes some E-TDL execution trace
path p in an E-TDL mode-switch graph is the set obf length that starts from mode times in mode
mode switch periods that can be traversed by somes 2 Modes[M;].

walk w that executestail (w) at least once. Walk maxc y (M o) & ©)
wW=((mg; 1) (M 1) (Misr s k2 )50 (Mas n) Midisr s 0~ o
where , 1, follows a pathp if: maxfd ( w;)jstart( m;)=(ms; s);j m;j= 9
Mj
p=fTsw(Mi;Mis1 ) jk<ng[f T[my]jk = ng: The following de nition estimates the highest demand func-

tion value for an E-TDL execution trace which can start at an
arbitrary mode time in any one of the declared modes. We
Sall it maximal demand bound function to recall the notion of

resource demand in each module should be precisely quaﬂg'mand bound function from [4] and differentiate with respect

ed. . .
An E-TDL execution trace is the combination of two type.%0 it due to the different task model from E-TDL.

of intervals. Before and after its walk no more than one modge nition 6 (Maximal Demand Bound Function). The
period is executed. The walk itself constitutes a sequene@ximal demand bound functiomdbfy, () denotes the
of intervals that span over some number of mode swit¢haximal cumulative requirement of computation for module
evaluation periods. Based on the concept of demand functidy 2 Modules during any time interval over E-TDL
and demand bound function [4], what follows evaluates thexecution traces.
resource demands in such intervals with respect to the E-TDL mdbfy () £ max fmaxdy (Mo <) g (10)
model we are considering. Let and ? be the mode times Mi (Ms; ) Mi s s

of the modem such thaO Kk < E T[mg]. The demand

functio_n o (_mk; K fj) within a modem_k is the cgmula_tive C. Schedulability of an E-TDL System

execution time required by all the task instanceminhaving
its releases and deadlines betwegrand E.

B. Resource demand of an E-TDL Module
To determine the schedulability of an E-TDL system, th

We are now able to formulate our rst schedulability
condition for an E-TDL system unddeDF. This condition

d(me; «; ) E (5) is derived from theprocessor demand criteriof#], [6]. The
E . LET, o schedulability of a task set where deadlines are less than
T T +t1 G periods is guaranteed whenever the cumulative demand of
i2 [m] 0 the computation made by its tasks in any interval is never

For a WalkW, its demand function can be calculated as: Iarger than the Iength of this interval. The fOIIOWing theorem
adapts this reasoning to the E-TDL framework by cumulating

o (w) = k Tsw (Mic; Mk JU (M) (6)  the processor demands over modules. It checks for any time
(Mi; «)2w interval if the total amount of processing time requested by all
whereU(my) is the processor utilization factor of mode, : the individual modules to complete their execution traces does
C. not exceed the interval length. Multi-mode E-TDL with mode
. (7) switches afls, are included into the following schedulability

U(mk)d:ef .
2 ] Ti theorem.

The foregoing de nitions can be applied to express the r@&heorem 1 (Schedulability of an E-TDL System). Let be
source demanded by an E-TDL module execution trage. an E-TDL system de ned by a set of modulésdules such

De nition 4 (Demand Functior). For a given E-TDL execu- hat
tion trace m; =(Ms; s; 9:w;ms; 1), its demand function max fU(m)g 1 (11)
d ( wm,) is the cumulative processing time required My to M 2 Modules m2Modes [M; ]

execute v, . If for every time interval > 0 :

d(wm)Ed(ms s Y+ dF W)+ d(me;0; 1) (8) mdbfy, () 12)
Execution traces depend on the system evolution. During anM; 2Modules
interval  that starts when modull;j is running modems then the E-TDL system is schedulable under EDF on one
at mode time s, different execution traces may be observedgrocessor.

each of them is depending on the performed mode switches. Proof. The proof of this theorem can be derived from
Each of these execution traces is characterized by some vdleenma 3.4 in [4]. The authors show that a complete task



system is feasible on one processor if for any time instarssciated with intervals that will never completely overlap due
t; and t, such that0 t; < t,, the processor resourcesto the timing control of tasks in the time-triggered paradigm.
requested in the intervdlky;t,] do not exceed the available Since these demands will never be simultaneous, adding them
processing resources in this interval. Since we assume tloakrestimates the cumulative demand.

one unit of computation is available per one unit of time, the
total amount of processing time available in this interval i?a
equal tot, t;. According to De nition 6, the computational
time requested by the tasks of modillg 2 Modules in

In the next sections we make use of the bricks presented so
r to study offsets between the traces from distinct modules
and develop more accurate schedulability conditions able to

. : better cope with multi-module and multi-mode E-TDL. To
the interval[ty;to] is not larger thanmdbfy, (t2  t1). All P

dules f the satl odul te for th i reduce the pessimism of Theorem 1 and to provide an exact
modules from the sellodules Compete Tor tn€ processor UMeg\ , o sterization of a feasible E-TDL system, it is necessary
in the interval[t; to] and therefore the demands from all thes

dul ‘b d q d o th | ci de ne properly how execution traces in different modules
:ggoﬁr&ismus € summed up and compared o the availa v%rlap. It is necessary to study precisely the possible ac-

tivation patterns of modes that are running concurrently in
The suf cient condition from Theorem 1 relies on the sundifferent modules.

of maximal demands in all modules. It assumes that these

maximal demands are synchronous as in the worst case. {{- E-TDL MULTI-MODULE AND MULTI-MODE OFFSET

reality, the fact that mode periods, task periods and task ANALYSIS

offsets are precisely xed in time within the time-triggeredA. Module start time instants

paradigm, can imply that this synchronous worst case doeSLet (Mast; ast) an instantaneous state of a modil .

not correspond to any actual activation pattern. In that Ca$flis state occursyy time after the beginning ofngs;. The
the condition overestimates the actual processor demand V&Istart

modules. The following example shows the schedulabili%/an sta

overestimation for time-triggered systems. thatM; may travel from its initialization up to the beginning

Example 1. Given an E-TDL system composed of moduled mgs; .
M, and M, and two positive-integers and " such
that " < . Module M; can run in one of two modes

Modes[M;] = fomli m{g both having the same mode period: |n the following we give some conditions to exploit tasks,
T[mi] = T[mj] =  at the end of which each one canmodes, and modules relationships. The schedulability analysis
jump to the other mode. Modulbl, has only one mode of multi-module multi-mode E-TDL systems will bene t from

Modes[M,] = fmzg with the mode periodl[mz] = 2 . these conditions. The statements of these conditions are based
All the modes are single-task and their task sets are @ paths.

follows: [ma] = fo1 = (0" )g [mi] = £0 =" .. et C Divisor of Patf). Th
(n. " " )g, [mz]:f ) =(0,2( --)’2' 2 )g e nituon ( reates ommon IVISOr O aI). e

' ’ ’ greatest common divisagcd(p) of a pathp is the greatest
common divisor of all mode switch periods making this path
and of the period of its last mode.

start (mgst) = fj wj j head(w) = Init [M;]; tail (W) = mgs; g

my m‘l’ mjy mp mg )
- . De ning Tg, (Mk; Mk+1) = % the length of a
M, X T X X o walk in Equation (4) can be rewritten as:
T[my] = T[m] = T[mi] = T[mi] = L X1 0

' jwj = gcd(p) k Tow (Mic; Micen ) (13)

mz my my -

— ]_
Mz 2 = i All the pairs T, (my; my+1) within a pathp are mutually

prime, and a walkw of p is a linear combination of these

N coprime integers. From the Frobenius problem statement [21],
Fig. 5: A sample run of the E-TDL system from Example 154 it follows that, given a set of relatively prime positive

It can be seen from the above gure that the system il€gersai;:::;an, any natural number larger than some
schedulable. However, for the intervat 2 the condition of Pound noted as(a;;:::;a,) can be expressed as a linear

Theorem 1, Equation (12), is not satis ed. The demand bouf@MmPination ofay; :::;a,. Then, for a given path the lengths
functions over an interval of this length for the individuan its potential walks, and so the start instants of the last mode

modules are: in these walks, fall in the set of all natural multiplesgafd(p).
mdbfy, ()= "+ for w, =( m‘{' " (M l)ima:”) A generic destination mod®ags; can begin at the time instants
1 1 LI | H 1 1 . .
mdbfy, () = 2( "y for w, =(M20:2; ::::0) in start (mgs; ), and it is

The cumulative demand imdbfy, () + mdbfy,() = start (Mgs; ) [ fnged(p)jn2 Ng (14)
3 ">2 as0<"< . The summed up demands are as-

T[mz] =2 T[mz] =2

p2 Past



where Pggt is the set of all the paths leading from thgterminated before the activation of the current one). Since the
initial mode to the destination modags;. Then(mgst; gst) Only considered instances of modg should be these which
can be observed at timeé = tggar (Mgst) + ost Where run concurrently withm,, the value of ged(pa[ po) cannot
tstart (Mgst) 2 Start (Mgst). exceed the length of the periddmy)]. [ |

B. Time distance between mode starts in distinct modules The above relation holds for a pair of modes. We generalize

We now evaluate the time distances that can separH?éS result to the case of a compound system of more than two
start instants of the modes running in distinct modules. THeodules.

proposed approach is derived from the work of Pellizzoni an&mma 3 (Intervals between n model Let Modules® (
Lipari [20] that is applied to the analysis of the real-tim@odules be a set ofhn 1 E-TDL modulesM{;::::Mp 1
periodic tasks with offsets. wheren:3 n j Modulesj and my;:::;m, 1 ben 1

The following lemma characterizes the time distances bgygdes each belonging to a different moduleNrodules®
tween activations of two modes in two distinct modules. | gt M, 2 fModules Modules% and m, 2 ModesM].

Lemma 1 (Interval between two mode3. The time distance Suppose that the current instances of modes:::;my 1
between start instants of moae, 2 Modes|M,] and mode and m, are running at the same time and every maug
mp 2 Modes[M ] with M;; My, 2 Modules andM, 6 My, (k2 N:1 k n)has been reached by taking a patk.

lies within the set Suppose also that mode; started its most recent activation
] no sooner than all the other mode8k(> 1 : ; k)
foged(@Pal po)j 2 Zg: (15) if each modem, 2 Modules® (1 < k < n) started
Pa2PaiPo2 Py « gcd(p1[ p«) time before moden,, then the possible offsets
P, is a set of paths leading frormit [M,] to m, and P, is that separate the start ah, and the start ofm; are given
a set of paths leading frormit [M ] to my,. by ngcd(pi[ pn); n 2 N and must satisfy the following

Proof: The difference gart (Ma;mp) between start in- conditions:
stants of modem, and modemy which were reached by
traversing respectively path, and pathp, may be expressed 1 0 ngcdpi[ pn) <T[mn]

using Equation (14): 2. 8k2N:1<k<n; 9r22z:
start (Ma; Mp) = nged(Pa[ pn) =
tstart (Ma) tstart (Mp) = Nyged(pa) N2 gcd(ps) kged(Ps [ p) + rged(pe [ pn):
According to the Bzout's identity [3], for any non zero Proof: The rst condition results from Lemma 2. The

integers ¢ and d there exist integers<;y 2 Z such that second condition anchors the start instant raf, with re-

cx + dy = ged(c;d) and every integer of the forrox + dy Spect to the start instants of the other modes. Each mode

is a multiple ofgcd(c;d). This implies that the values ofMk : 1<k <n starts ,gcd(ps[ p«) time units before the
sart (Ma; My) are multiples ofgcd (ged(pa); ged(py)). Be-  start of my and is not nished by this time. From Lemma 1

cause the greatest common divisor operation satis es tfiiefollows that the start instant ofn, can occur only at time

property of associativity [12], the last term can be rewritterPOints that lie in the distancegcd(px [ pn) from the start of
asgced (Pa [ pb)- m M. This relation is expressed by the second conditionm

The following Lemma renes Lemma 1 by evaluating For an E-TDL system de ned by a sdtodules, the point
precisely the time intervals that can separate the start instaditénterest is to identify all the relations between concurrently
of two concurrent modes instances. running modesny; :::; Mjyodules j iN distinct modules of the

Lemma 2 (Interval between two concurrent mode$. Given
modem, 2 Modes[M,] and modem, 2 Modes[M ] where
Mga;Mp 2 Modules such thatM,; 6 My. If the current
instance of modeny, started no later than the current instan : :
of modem,, then the time distances between starts of theBeauire: 81k n:p is a path to moden

. L. . . Require: Lemma 3 holds fop1;:::;pn 1 and 2;:::; n 1
two instances lie inside the following set:

Ensure: Lemma 3 holds fopy;:::;pn and 2;:::; n
1: if not O n gcd(p1 n) <T [mnp]or kn 2N then
f ged(Pal p)o; (16) 2: return falsg (Pu L Pr) mo
pazpa ;pb2 Py 3: end if
4: fork 2;n 1do
where 2 N:0 gcd(pa [ po) <T [my]. 5. diff := nged(pi[ pn)  kgcd(pr[ pk)
Proof: For = 0 the most recent instances ofi; 6:  rem := diff mod gcd(pk [ pn)

and my, start exactly at the same time. The previous possibl%f i rfg:u?nof;;‘:”

mode'smy, activation points are moved back by multiples ofg:  end if
gcd(pa [ pp) as explained in Lemma 1. From somevalue, 10: end for
start instants of moden, belong to the previous1, instances 11 "étum true




Algorithm 1 makes use of Lemma 3. Given;:::; , 1 Furthermore, if the above condition is met not only for some
that realizes mode starts setup according to Lemma 3 fafrconcurrent modes but for all of them, it can be deduced that
n 1 modes, it checks if introduction of , for a n-th any combination of mode times in different modes de nes an

applying Algorithm 2, where initially the set®™ ofal , jfgp2 ~ p,: 8pk; o 2 P; ged(px [ pro) = 1.

ful lling Lemma 2 for modesm; andm; is computed. Then, k=1 ] )

by incrementingn from n = 3, the tuples (»;:::; o) are In that case all the possible parallel con gurations are

estimated according to Lemm'a 3 till= jMod’uIesj. observable. Consequently, the execution traces with the largest
' processor demand can be simultaneous. Then Theorem 1 can

Algorithm 2 FindStartinstantsg; :: :; Pimodules j) be used without any overestimation. Otherwise, the following

exact analysis can be performed.

Require: 8M;j 2 Modules : 9my 2 Modes[Mj ]
Require: 81 k j Modulesj : pg is a path to modeng 2 Modes[M]

Ensure: 8( 2;1:} jmodules j) 2 MO 1) Lemma 3 holds V. E-TDL EXACT EDF SCHEDULABILITY
1. @ =1 ,jLemma 2 holds for » and pathsp; andpz g
;f forn  SiiModulesj do The feasibility condition we derive for an E-TDL system
4 forall (2 n 12 (D do running undeiEDF on one processor makes use of offsets and
5: forall n:0  nged(Py[ pn) <T [mn]do task relationships. In order to be schedulable, for any observ-
6: if Ler(r;r)na_t 3 h(%lgs fo 2:::ti n 15 n) then able parallel con guration, the maximal processing demands
gi endif [Caiie n 1 n) of execution traces that begin at that particular con guration
9: end for cannot exceed the processing resources in any time interval.
10:  end for The following theorem guarantees schedulability of an E-TDL
11: end for t
12: return  (iModules j) system.

Theorem 2(Exact Schedulability of an E-TDL Systen). Let
C. Observable Parallel Con gurations be an E-TDL system de ned by a setrofnodulesM odules

An external observer of an E-TDL system can descrit%/Ik 2 Modules;1 k  n) such that
its state at a particular time instant of the run as a snhap-x
shot. This snapshot describes the modes and mode times max fUu(m)g 1 (18)
in each concurrent module at that moment. We name thisk=1 M 2Mdes M
snapshot a parallel con guration of the system denoted as

= (M1 1) (Mn: 1)) wheren = jModulesj, 8M; 2 for every observable parallel con guration
- 1y 1)svs n» n - ’ j

Modules Mk 2 MOdeS[MJ] and K is the current mode time :>((Ol:nl; 1); M (mn, n)) and every time interval
in my. '

A parallel con guration is observable if its modes offsets X
are in accordance with conditions of Lemma 3 (mode offsets maxd m, (Mk; «; ) (19)
can be found by applying Algorithm 2). k=1

De nition 8 (Observable Parallel Con guration). Given an where (my; ) is the state of modul#, in the observable
E-TDL system composed of Modules (n = jModulesj) parallel con guration , then the E-TDL system is schedulable

a parallel conguration = ((my; 1);:::;(My; n)) IS under EDF on one processor.
observable if there existé 2;:::; n) 2 (M(py;iiiipn) Proof: The proof of this theorem is similar to the proof
such that: of Theorem 1 and can be also derived from Lemma 3.4 in [4].
8k1<k n: 17) We dgsignate by, a time instant at which a'parallel con-
guration was observed. For > 0, the maximal demand
(k 12+ TImi)) mod T[mi] =« ged(Ps [ pe) functionmaxd v, (Mk; «; ) quanti es the greatest possible
Each of these observable parallel con gurations will b&esources that can be requested by moddle 2 Modules
analyzed and checked for feasibility. in the interval [ty;t] such that =t t; and My is

It may happen that the start instant of some mode camning in(myg; k) at the time instant;. The total amount
occur at any mode time of any other concurrent mode. Givenf processing time available in the intenfal; t2] is equal to

mg (1 k n) has been reached by path, then a mode modules we obtain the resources that must be granted for E-
my (1 X n) can start its execution at whatever modd@DL system in the time intervtl;;t,]. If these resources do
time of any other modeny if 8k 6 x : gcd(px [ px) = 1. not exceed , E-TDL system is schedulable. ]



A. Feasibility Bound wheremy 2 Modes[M; ].

In this section we derive an upper bound for the time intervaimilarly to the reasoning proposed by Baruah [4], [5], if the
in Theorem 2 so that condition 19 becomes fully comp§yStem is not schedulable, there exists somfor which the
tationnaly tractable. If an E-TDL system is not schedulabl&&cond conditi)t()n of Theorem 2 is violated:
then some of its tasks will miss its deadline in the time interval
that is no longer than this bound.

Every interval can be seen as a composition of three ) ) )
adjacent intervals: 1, » and 3. Interval , spans over Taking into account beforehand obtained properties bounding

the time from the rst to the last hyperperiod point in, function maxd w; (my; «; ) , an overow observed in
whereas 1 and 3 cover the pieces of execution occurrindmpIIes that:
respectively before and after,. Figure 6 illustrates the above X

maxd m; (My; k;) >
M; 2 Modules

described decomposition. max  U(my) +2max (U(mg)H [mi]) >
M; 2 Modules g *
1 2 s Thus, it is suf cient to check the feasibility for the intervals
o that are no longer thalt:;
wl | ‘ 2 max(U(mi)H [my])
(’) H[:m] 2H[:m] 3Him] H[m;] QHEm] H[;n] H[;n] H[mg] ZHim] < MJ ZMOduls (21)
0 ' ' T[V“lll ’ T[mi] ’ T[mag] ) T[m:] 1 maX U (m k )

M;2Modules Mk

wheremy 2 Modes[M; ].

Fig. 6: Decomposition of into three intervals. VI. TESTCASE
The maximum value of demand function in any intervaj A sample E-TDL system is studied to gain insight into the
_ TR . key aspects of the proposed EDF schedulability analysis.
for a moduleM; , denoted bydw, (1), is given by: The test case is a 3-modules E-TDL system, where the
maxdy, (1) = max dfy, (M min (Mk); H M) modulesM1; M ;M3 2 Modules execute on the same node.
my

Each module de nes its modes together with modes switches
as it is indicated on Figure 7 (the topmost mode in each

odule is considered to be the initial mode). Periods, mode

wherer min (M) is the earliest release of SOme task from moi%vitch periods as well as all the task parameters making up
my 2 Modes[M; ] occurring after the beginning of this mode,[he particular modes are presented in Table 1.
In like manner, the maximum value of demand function for

any interval 3, denoted bydfy, ( 3), can be found:

mmeklx(U(mk)H [mg])

maxdy, ( 3)= max dm; (Mi; 0; dmax (M) .

max(U(mi)H [my])

JA

wheredmax (M) is the latest deadline of some task from mod
my 2 Modes[M;] before its hyperperiodH [my].

The maximum value of demand function for any interval, M1
covering full executions of the hyperperiods of subsequent ) .
modes from the rst hyperperiod in the rst mode to the start Fig- 7: A 3-modules E-TDL system and its mode switches
of the last hyperperiod in the last mode inside intervalis

denoted by, ( 2) such that:

M3

Module | mode | T | T tasks
maxdv; ( 2) max U(my) (20) " M (10 10 | 11026 10) 120 L55)
Polmp | 8 - 121(2;1,2;8)
wheremy 2 Modes[M;]. Y mz1 | 4 4 211(0;1;4;4)
As there is no tasks that can be started in one of these intervals myp | 8 | 8 | 2z1(li11:8)
. . . . M3 ma1 8 - 311(2;1;1;8)
and having deadline in another, for anyand any valid mode
time y in modemy from moduleM; the following relation Tab. 1: Modes and tasks properties
is derived: On the rst attempt, we apply Theorem 1 to verify system
max U(myg) + 2 max (U(m)H [m]) schedulability. Since the sum of the maximal utilization factors
Mk M for the modes in distinct modules is not greater than 1, we
maxdiy; (1) +max dw; ( 2)+max dw, ( 3) verify condition given by Equation (12). In Figure 8, a series

maxd v, (Mk; «; ) of plots illustrates maximal demand bound functiondbfy , ,



P12 | P22 | P31
P12 - 2 2
p22 2 - 4
P31 2 4 -

Tab. 3: Greatest common divisors for pairs of paths leading to
the modes that can execute concurrently

(p22; p31) = f0;1g. Mode m3; can start either at the same
time asmy, (0 gcd(pa2 [ ps1)) either4 time units before
(1 gcd(pz2 [ ps1))- Equation (18) is not satis ed by any
coefcient (p22;p31) for module M, state (my;;1) and
moduleM 3 state(msy; 2), since(2 1+8) mod 8 2f 0;4g. A
parallel con guration where these two module states coincide
is not observable and therefore the execution trages and

M, cannot start at the same time instant. It can be concluded
that the system is schedulable in the intervall .

Fig. 8: Maximal demand functions For interval = 2 , the parallel con gurations for which

the schedulability of the system cannot be guaranteed by
Theorem 1 are as follows:

mdbfy,, mdbfy,, and their sum which is compared to the f((m12;2); (M22; 22);(Ma1; 31))

length of the interval . As can be seen, the condition of j 22f0;1g; 312f1;299

Theorem 1 cannot be satised irr1 and =2 .

For = 1 , the resource demands of traces, = Since all these con gurations occur during concurrent exe-
(M22;1;2;;:;:0) and w, = (Ma1;2;3;;;;;0) are equal to cution of modesn;,mz, andms;, the relationship between
one. The demand function of every execution trace of lengifi€ir starts should be established.

1in M, is equal to O. We apply Lemma 2 to paths Ieadlng_to modes, and

For = 2 , the demand functions of tracesy, = ™M22 (see Table 2) u_nd_er the assumpnon that the current
(M12;2,4;5:::0), wm, = (mx;135::;0), O — !nstance of modeny, is |n\{oked no earlier thazn the current
(M22:0:2::::0), wm, = (Mar24:::;:0), and gls = instance ofmg. It results in values of » 2 @ (p12: P22)
(ms1:1;3:;;::0) are equal to one. which correspond to the distances,( gcd(piz [ p22))

With the help of the offset analysis and Theorem 2, it caPetween starts ofmi, and my, concurrent instances. By
be veri ed if the revealed above execution traces may st&i@nsidering path leading to modes;, from Lemma 3, we
actually at the same time, as assumed by Theorem 1. We vehgve © (p12; pz2; pa1) of tuples( 2; 3). Each tuple( »; 3)
whether the parallel con gurations corresponding to the staf@§scribes a mode activation pattern in which, and ms;
of these execution traces are observable or not. started respectively, gcd(piz[ p22) and 3 ged(piz2[ pai)

For = 1 , the above identied parallel con gura- instants beforem;. Table 4 shows all valid tuple§ »; 3)
tions for which the system is not schedulable are given t@gether with possible walks starting at the initialization of
((mq; 1);(mao;1); (ma1;2)) where(my; 1) can be an arbi- every module and resulting in the activation pattern re ected
trary state of modulé/ ;. Consequently, we have to study théy this tuple.
time distances that can separate starts of concurrent instances

of modesmy, andmas;. (2; 3) example walk
As a rst step, for every module, the paths leading to the W12 W22 W31
appropriate mode from the initial mode must be found. Table 2 (0:0) | (mu1;4) (m21;10) [ (ma1;5)
shows these paths together with their greatest common divisor 0.2 |(mu:2) | (M21:1):(M2p:2) | (Ma1:2)
paths tog , 9 G [ (mu; 1) (M21;2) (Ma1; 1)
values (path ton,, is not considered for=1 ). (1;3) | (m11;3) | (m21;5);(m22; 1) | (mag;3)
(2;0) [ (m11;4) | (m21;5);(M22;2) | (M31;5)
path gcd (2;2) [ (m11;2) | (M21;2); (M22; 1) | (M31;2)
prz | mut ! mp 2 (3;1) (m11;1) (mo1;1) (mag;1)
P22 | M21! ma 4 (3;3) [ (m11;3) | (M21;4); (ma2; 1) | (M31;3)
P31 M3z 8
Tab. 2: Greatest common divisor of paths Tab. 4: Example walks for all 2; 31) 2 @ (p12; p22;P31)

The greatest common divisorgcd(p, [ pp) for pairs of

paths leading to modes in different modules are calculated

in Table 3. According to Lemma 1, fgr,, =4 andps; =8, Having values of ©) (pio;p22;pa1) at our disposal, we
every time distance separating starts of these two modes ideane all the observable parallel con gurations for concurrent
multiple of gcd(po2 [ p31) = 4. From Lemma 2 we obtain execution of modesni», my, and ms;. Table 5 represents,
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