
HAL Id: hal-01067909
https://onera.hal.science/hal-01067909

Submitted on 24 Sep 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

EDF Schedulability Analysis for an Extended Timing
Definition Language

T. Kloda, B. d’Augsbourg, L. Santinelli

To cite this version:
T. Kloda, B. d’Augsbourg, L. Santinelli. EDF Schedulability Analysis for an Extended Timing Def-
inition Language. 9th IEEE International Symposium on Industrial Embedded Systems, Jun 2014,
PISA, Italy. �hal-01067909�

https://onera.hal.science/hal-01067909
https://hal.archives-ouvertes.fr

EDF Schedulability Analysis for an Extended
Timing Definition Language

Tomasz Kloda, Bruno d’Ausbourg, Luca Santinelli
ONERA Toulouse, name.surname@onera.fr

Abstract—In a time-triggered system, activities like task releas-
ing, operational mode switches, sensor readings and actuations
are all initiated at predetermined time instants. This paper
proposes an extension of the TDL (Timing Definition Language)
time-triggered compositional framework, and presents, based on
the widely-applied methods, a condition for its schedulability.
The schedulability condition developed accounts for multiple
concurrently executing modules, multiple operational modes
and mode switches. This way the system schedulability can be
guaranteed in any execution condition.

I. INTRODUCTION

The development of embedded software is a highly platform
dependent process. The main difficulty lies in both formulating
the functional specification of the system and correctly deter-
mining its temporal behavior. While the former is facilitated by
high-level programming languages which abstract from many
hardware aspects, getting the expected temporal characteristic
of the system involves usually much more efforts due to the
implementation of scheduling policies, synchronization, and
inter-processes communication protocols.

To efficiently manage these two crucial aspects for system
correctness, time-triggered languages are devised for em-
bedded programming. These languages clearly separate the
functional part of applications and their timing definition.
Applications are specified through two descriptions: their
timing definition, expressed in a time-triggered language, and
the functional code of tasks, expressed in any programming
language. At the final stage, a dedicated compiler generates,
based on both descriptions, a ready-to-run executable for a
selected target-platform. This allows system designers and
developers to focus on the functional aspects instead of the
platform (hardware and operating system) without being in-
terested in where, how and when tasks are actually scheduled:
on platforms with a single or many CPUs, on platforms with
a preemptive priority scheduling or not.

Time-triggered languages provide a programming abstrac-
tion which was firstly introduced within the Giotto program-
ming language [13]. Giotto assigns to each task a Logical
Execution Time (LET) [14] which defines the precise instants
when the task exchanges data with the other tasks and with its
environment. A task is invoked and reads its input ports at the
beginning of its LET interval, then performs a computation
whose results are made available on its output ports exactly
at the end of the LET. Figure 1 shows the difference between
the logical and physical execution of a task. The observable
temporal behavior of a task is independent from the platform

related factors such as processing speed, scheduling policy and
communication protocols.

Logical

Physical time

LET

output write
stopresumestart

input read

 release termination

suspend

Fig. 1: Logical Execution Time and its physical execution.

Timing Definition Language (TDL) [9], [10], [26], a succes-
sor of Giotto, extends these concepts by allowing a decompo-
sition of large real-time systems into concurrently executing
tasks sets named modules. Each TDL module runs in one oper-
ational mode at a time and can switch the modes independently
of other modules.

A. Contributions

While enabling timing and value predictability of pro-
grams, Giotto and TDL can be further extended towards
a more flexible and more realistic application modeling. In
both frameworks, the task LET and period are equal. In-
troducing a task model with an initial offset and the LET
of a task terminating before the end of its period, is what
we call Extended Timing Definition Language (E-TDL). This
new E-TDL framework is presented in Section II.

With E-TDL it is necessary to guarantee safe execution dur-
ing multimodal operation inside every module. In section I-B
are cited some methods [27], [11] that can be adapted to
our case in order to provide a schedulability condition. They
address mainly event-triggered systems where the execution of
an activity is triggered by the occurrence of an event whose
arrival cannot be predefined beforehand. Hence, it can be
supposed that in all modules the events which produce the
biggest demand may arrive at the same time.

Time-triggered systems observe the state of the controlled
object only at specified time instants and initiate appropriate
activities only at these instants. Time instants of tasks acti-
vations are precisely defined and it is known whether tasks
are launched simultaneously or not. Consequently it may be
avoided to consider the synchronous case in analysis when it
is well known that this case never occurs.

Compositional analysis of such systems should be able
to exhibit the relations between the start of the intervals in
different modules and compare only these that can actually

start at the same time. Therefore, the analyses that are well-
suited for event-triggered systems can be overestimating in the
time-triggered context.

With this work we propose a sufficient condition for the
feasibility of an E-TDL system running on a single CPU under
the Earliest Deadline First (EDF) scheduling policy, [15]. In
Section IV we describe an offset analysis to identify feasible
execution configurations. In Section V we detail the schedu-
lability analysis which makes use of these configurations and
applies to time-triggered E-TDL systems.

B. Related Work

Many different protocols and methodologies attempting to
ensure the schedulability of a system across mode switches
have been proposed in the literature. Protocols known as
synchronous [28], [2], [22] do not release new tasks until
all old mode tasks are completed. On the contrary, asyn-
chronous protocols, both for Fixed Priority [29], [19], [22]
and EDF [1], [7], define that during transition phase the last
activations of old mode tasks and new mode tasks can be
executed simultaneously. In TDL and E-TDL, systems can be
composed of many modules and each module can undergo
mode transitions that are defined only in its local scope. For
systems designed in a compositional manner, an approach
based on the real-time calculus (RTC) [27] is developed in
the work of Stoimenov et al. [25]. Fisher [11] proposed
a schedulability test for EDF where the allocation of the
processing resources for each subsystem is represented by an
explicit-deadline periodic resource model [8] and a sporadic
task model [17] is chosen. Servers can also dynamically adapt
their parameters of resource reservation. The feasibility under
multi-moded resource reservation was studied by Santinelli et
al. in [23].

Concerning the schedulability analysis of time-triggered
systems the most significant contributions were made notably
by Farcas [9] for TDL and Martinek in the Giotto in Ada [16]
framework. The latter extends a Giotto’s task model with the
notion of deadline but, since Giotto is not a compositional
framework, these results cannot be applied in this instance.

II. EXTENDED TDL MODEL

An E-TDL periodic task τi = (Φi, Ci, LETi, Ti) is char-
acterized by an offset Φi, a worst-case execution time Ci, a
Logical Execution Time LETi (that gives its relative deadline
Di) and a period Ti.

The offset Φi is restricted to be smaller than the period
(0 ≤ Φi < Ti) and LETi has to be large enough that task
could be executed within it, Ci ≤ LETi ≤ Ti−Φi. Moreover,
the LET semantics does not allow the j−th instance (j ∈ N+)
of task τi started in the time interval [(j − 1)Ti, jTi] to be
finished after time jTi. Taking into account the above men-
tioned constraints, an E-TDL task τi may be implemented by a
periodic real-time task whose absolute releases and deadlines
are expressed respectively as ri,j = Φi + (j− 1)Ti ≤ jTi and
di,j = Φi + LETi + (j − 1)Ti ≤ jTi.

Φi

(j − 1)Ti

Ci
ri,j

read write

di,j

Ti

LETi ≡ Di

jTi

Ci
ri,j+1

read write

di,j+1

Ti

LETi ≡ Di

(j + 1)Ti

Fig. 2: E-TDL task model.

The LET semantics imposes that a task reads periodically
its inputs exactly when it is released and delivers its outputs
exactly at the end of its LET interval.

An E-TDL system consists of multiple modules running on
the same node. All modules of the system, referred hereafter
as Modules, run concurrently sharing common processing
resources. Each module Mj ∈ Modules, from a scheduling
point of view, is considered independent from the others.

The basic functional units of time-triggered languages are
tasks that periodically execute some piece of code. Several
concurrent tasks may be grouped into a mode. Tasks are
invoked within the mode at declared frequencies and can
be removed or added when switching from one mode to
another. They communicate between them as well as with
sensors and actuators by means of ports. A mode is invoked
and performs appropriate actions whenever the environment
is in some specific condition that should be handled by this
particular operational mode [18]. With a mode mk, the set of
tasks belonging to mk is τ [mk].

At a time module Mj executes one of its modes from the
set Modes[Mj]. One of them is the initial mode minit =
Init[Mj] and is executed at the system beginning. Each mode
mk executes periodically within its mode period T [mk]. A
mode period is restrained to be a common multiple of the pe-
riods of all tasks belonging to that mode, T [mk]

def
= n H[mk]

with n ∈ N+, and H[mk]
def
= lcm{Ti | τi ∈ τ [mk]}.

The relative amount of time spent inside a mode mk is
named mode time δk and is set to 0 every time a mode
period begins. A module state can be described by the tuple
(mk, δk). As mode time δk evolves within the mode period
T [mk], 0 ≤ δk ≤ T [mk], appropriate actions like releasing or
terminating tasks, are triggered.

Whenever a condition change is detected in the environment
or inside the system, the current operating mode stops its
activities and a new mode starts instantaneously with a mode
time set to zero. These transitions are described in E-TDL by
mode switches. During execution of mode mk the conditions to
switch from mode mk to mode mk+1 are checked periodically
every mode switch period Tsw(mk,mk+1). The instants at
which this check occurs are named mode switch instants, δms.
If the conditions are satisfied, the mode switch can take place.

Every mode switch period Tsw(mk,mk+1) is restricted to
be a common multiple of all the task periods of mk:

Tsw(mk,mk+1) mod H[mk] = 0 ∧
∃n ∈ N+, n Tsw(mk,mk+1) = T [mk].(1)

Such a choice of mode switch instants entails that a mode
switch may occur only when no current mode task is running.
This way the new mode can be safely activated without any

delay. In future works we will enhance the mode switch within
E-TDL to let it safely happen before Tsw(mk,mk+1).

Within an actual mode mk, the modes that may be started
at δk belong to the set starting modes(mk, δk) where

starting modes(mk, δk) =

{mk+1 | ∃Tsw(mk,mk+1) : δk mod Tsw(mk,mk+1) = 0} ∪
{mk | δk = T [mk]}. (2)

III. COMPOSITIONAL SCHEDULABILITY ANALYSIS FOR
E-TDL

The presented E-TDL multi-mode model imposes on each
module of the system a set of possible execution patterns
that can be observed during the system temporal evolution. In
what follows, the behavior of every module is characterized
in time and the processing resources the module demands
over time are quantified. This permits to provide a sufficient
condition for the schedulability of the whole system under
mode switches.

A. Execution Trace of an E-TDL Module
In [9] Farcas proposed a mode-switch graph which allows

to exhibit all the modes of a given module and the tran-
sitions it can undergo. Modes are represented by vertices
and mode switches by directed edges in the graph. The
mode switch period labels the edge. More formally, the mode
switch graph of a module Mj ∈Modules describes the set
of switches that this module can undergo. Each mode switch
is defined as a tuple (mk,mk+1, Tsw(mk,mk+1)) where
mk,mk+1 ∈ Modes[Mj] and Tsw(mk,mk+1) is the period
of the (mk,mk+1) mode switch. Restarting the same mode
after the end of its period can be also considered as a mode
switch (mk,mk, T [mk]) and is so depicted on the graph.
The mode switch graph can be defined as the set:

{(mk,mk+1, Tsw(mk,mk+1)) |mk,mk+1 ∈Modes[Mj],

∃δk : mk+1 ∈ starting modes(mk, δk)} (3)

ma mb

mc

Tsw(ma,mb)

T [ma] T [mb]

T [mc]

Tsw(ma,mc)

. . .

. . .

Fig. 3: Example of a mode-switch graph.

During its execution, a module can remain in the current
mode or switch to one of its possible successive modes. The
behavior of a module can be described by a walk that travels
through its mode-switch graph, visiting modes at multiples
of mode switch periods, jumping to another modes whenever
there is a need for changing mode.

Definition 1 (Walk in a Mode-Switch Graph). A walk
w = ((m1, µ1), . . . , (mn, µn)) of an E-TDL mode-switch
graph is a sequence of n pairs where m1, . . . ,mn are the
subsequent modes in the mode-switch graph, and µ1, . . . µk
are the numbers of:
• times the mode switch condition to mk+1 has been

checked in mk (number of Tsw(mk,mk+1) spent in mk),
for k < n; µk ∈ N+,

• full periods T [mk] spent in mk, for k = n; µk ∈ N0.

The first mode m1 in the walk w is designated as head(w)
and the last mode mn as tail(w). The length of a walk
w = ((m1, µ1), . . . , (mn, µn)) can be expressed as:

|w| =
n∑
k=1

µkTsw(mk,mk+1) (4)

We use Tsw(mk,mk+1) interchangeably with T [mk] for
k = n as there is no next mode in the walk w.

Figure 4 illustrates how an execution trace in the interval
[ts, tf] can be decomposed. This trace encapsulates a walk w
between two time intervals. Both of these time intervals cover
an execution pattern within a single mode run. The interval
that precedes w starts at time ts and ends when the module
enters mode head(w). The interval at the tail of w starts in
mode tail(w) at mode time 0 and ends at tf .

Definition 2 (Module Execution Trace). An execution trace
of an E-TDL module Mj ∈ Modules over a time interval
[ts, tf] is denoted by σMj

= (ms, δs, δ
′
s, w,mf , δf) where

• ms ∈Modes[Mj] is the mode executing before walk w,
• δs : 0 < δs ≤ T [ms] is the mode time related to ts,
• δ′s : δs ≤ δ′s ≤ T [ms] is the mode time of mode ms,
• w is a walk in the mode-switch graph of module Mj ,
• mf ∈Modes[Mj] is the mode executing after walk w,
• δf : 0 ≤ δf < T [mf] is the mode time related to tf .

It has to be fulfilled that:
• head(w) ∈ starting modes(ms, δ

′
s),

• if tail(w) 6= mf ,
then mf ∈ starting modes(tail(w), T [tail(w)]) and
tail(w) is executed at least one time at the end of w,

• tf − ts = δ′s − δs + |w|+ δf .

Short intervals, within which no more than one mode period
is executed, can be represented as σMj = (ms, δs, δ

′
s, ∅, ∅, 0).

0 δs Tsw(ms,m1) δ′s Tsw(m1,m2) 2 ∗ Tsw(m1,m2) Tsw(m2,m3 = mf) δf T [m3]
ts tf

ms m1 m2 m3 = mf

w = ((m1, 2), (m2, 1), (m3, 0))

Fig. 4: Example of a module execution trace

The length of an execution trace σMj
is given by |σMj

| =
δ′s − δs + |w|+ δf , and mode as well as mode time in which
it starts are defined as start(σMj

) = (ms, δs).

When a module Mj runs a walk, it crosses modes. Mj can
stay in any mode mk before starting mk+1 for any time that
is a multiple of the mode switch period Tsw(mk,mk+1). The
length of a walk can be expressed as a linear combination of
the modes switch periods it spends in each of its modes.

Definition 3 (Path in a Mode-Switch Graph). A
path p in an E-TDL mode-switch graph is the set of
mode switch periods that can be traversed by some
walk w that executes tail(w) at least once. Walk
w = ((m1, µ1), . . . , (mk, µk), (mk+1, µk+1), . . . , (mn, µn))
where µn ≥ 1, follows a path p if:

p = {Tsw(mk,mk+1) | k < n} ∪ {T [mk] | k = n}.

B. Resource demand of an E-TDL Module
To determine the schedulability of an E-TDL system, the

resource demand in each module should be precisely quanti-
fied.

An E-TDL execution trace is the combination of two types
of intervals. Before and after its walk no more than one mode
period is executed. The walk itself constitutes a sequence
of intervals that span over some number of mode switch
evaluation periods. Based on the concept of demand function
and demand bound function [4], what follows evaluates the
resource demands in such intervals with respect to the E-TDL
model we are considering. Let δk and δ′k be the mode times
of the mode mk such that 0 ≤ δk < δ′k ≤ T [mk]. The demand
function df(mk, δk, δ

′
k) within a mode mk is the cumulative

execution time required by all the task instances in mk having
its releases and deadlines between δk and δ′k.

df(mk, δk, δ
′
k)

def
= (5)∑

τi∈τ [mk]

(⌊
δ′k−Φi−LETi

Ti

⌋
−
⌈
δk−Φi
Ti

⌉
+1

)
0

Ci

For a walk w, its demand function can be calculated as:

df(w)
def
=

∑
(mk,µk)∈w

µkTsw(mk,mk+1)U(mk) (6)

where U(mk) is the processor utilization factor of mode mk:

U(mk)
def
=

∑
τi∈τ [mk]

Ci
Ti
. (7)

The foregoing definitions can be applied to express the re-
source demanded by an E-TDL module execution trace σMj

.

Definition 4 (Demand Function). For a given E-TDL execu-
tion trace σMj = (ms, δs, δ

′
s, w,mf , δf), its demand function

df(σMj) is the cumulative processing time required by Mj to
execute σMj

.

df(σMj)
def
= df(ms, δs, δ

′
s) + df(w) + df(mf , 0, δf) (8)

Execution traces depend on the system evolution. During an
interval ∆ that starts when module Mj is running mode ms

at mode time δs, different execution traces may be observed :
each of them is depending on the performed mode switches.
Each of these execution traces is characterized by some value

of demand function. Only the higest demand function value
of these traces can be considered in the further analysis.

Definition 5 (Maximal Demand Function). For
module Mj ∈ Modules maximal demand function
maxdfMj

(ms, δs,∆) denotes the largest value of demand
function that characterizes some E-TDL execution trace
of length ∆ that starts from mode time δs in mode
ms ∈Modes[Mj].

maxdfMj
(ms, δs,∆)

def
= (9)

max
σMj

{df(σMj
)|start(σMj

) = (ms, δs), |σMj
| = ∆}

The following definition estimates the highest demand func-
tion value for an E-TDL execution trace which can start at an
arbitrary mode time in any one of the declared modes. We
call it maximal demand bound function to recall the notion of
demand bound function from [4] and differentiate with respect
to it due to the different task model from E-TDL.

Definition 6 (Maximal Demand Bound Function). The
maximal demand bound function mdbfMj (∆) denotes the
maximal cumulative requirement of computation for module
Mj ∈ Modules during any time interval ∆ over E-TDL
execution traces.

mdbfMj (∆)
def
= max

(ms,δs)
{maxdfMj (ms, δs,∆)} (10)

C. Schedulability of an E-TDL System
We are now able to formulate our first schedulability

condition for an E-TDL system under EDF. This condition
is derived from the processor demand criterion [4], [6]. The
schedulability of a task set where deadlines are less than
periods is guaranteed whenever the cumulative demand of
the computation made by its tasks in any interval is never
larger than the length of this interval. The following theorem
adapts this reasoning to the E-TDL framework by cumulating
the processor demands over modules. It checks for any time
interval if the total amount of processing time requested by all
the individual modules to complete their execution traces does
not exceed the interval length. Multi-mode E-TDL with mode
switches at Tsw are included into the following schedulability
theorem.

Theorem 1 (Schedulability of an E-TDL System). Let be
an E-TDL system defined by a set of modules Modules such
that: ∑

Mj∈Modules

max
m∈Modes[Mj]

{U(m)} ≤ 1 (11)

If for every time interval ∆ > 0 :∑
Mj∈Modules

mdbfMj
(∆) ≤ ∆ (12)

then the E-TDL system is schedulable under EDF on one
processor.

Proof: The proof of this theorem can be derived from
Lemma 3.4 in [4]. The authors show that a complete task

system is feasible on one processor if for any time instants
t1 and t2 such that 0 ≤ t1 < t2, the processor resources
requested in the interval [t1, t2] do not exceed the available
processing resources in this interval. Since we assume that
one unit of computation is available per one unit of time, the
total amount of processing time available in this interval is
equal to t2− t1. According to Definition 6, the computational
time requested by the tasks of module Mj ∈ Modules in
the interval [t1, t2] is not larger than mdbfMj (t2 − t1). All
modules from the set Modules compete for the processor time
in the interval [t1, t2] and therefore the demands from all these
modules must be summed up and compared to the available
resources.

The sufficient condition from Theorem 1 relies on the sum
of maximal demands in all modules. It assumes that these
maximal demands are synchronous as in the worst case. In
reality, the fact that mode periods, task periods and task
offsets are precisely fixed in time within the time-triggered
paradigm, can imply that this synchronous worst case does
not correspond to any actual activation pattern. In that case
the condition overestimates the actual processor demand over
modules. The following example shows the schedulability
overestimation for time-triggered systems.

Example 1. Given an E-TDL system composed of modules
M1 and M2 and two positive-integers π and ε such
that ε < π. Module M1 can run in one of two modes
Modes[M1] = {m1,m

′
1} both having the same mode period:

T [m1] = T [m′1] = π at the end of which each one can
jump to the other mode. Module M2 has only one mode
Modes[M2] = {m2} with the mode period T [m2] = 2π.
All the modes are single-task and their task sets are as
follows: τ [m1] = {τ1 = (0, ε, ε, π)}, τ [m′1] = {τ ′1 =
(ε, π − ε, π − ε, π)}, τ [m2] = {τ2 = (0, 2(π − ε), 2π, 2π)}.

M1

M2

τ1 τ ′1 τ1 τ1 τ ′1

Φ = ε

τ2 τ2,1 τ2,2 τ2

T [m1] = π T [m′1] = π T [m1] = π T [m1] = π

T [m2] = 2π T [m2] = 2π

∆ = 2π

m1 m′1 m1 m1 m′1

m2 m2 m2

Φ = ε

Fig. 5: A sample run of the E-TDL system from Example 1.

It can be seen from the above figure that the system is
schedulable. However, for the interval ∆ = 2π the condition of
Theorem 1, Equation (12), is not satisfied. The demand bound
functions over an interval of this length for the individual
modules are:
• mdbfM1(∆) = ε+ π for σM1 = (m′1, ε, π, (m1, 1),m1, ε)
• mdbfM2

(∆) = 2(π − ε) for σM2
= (m2, 0, 2π, ∅, ∅, 0)

The cumulative demand is mdbfM1
(∆) + mdbfM2

(∆) =
3π − ε > 2π as 0 < ε < π. The summed up demands are as-

sociated with intervals that will never completely overlap due
to the timing control of tasks in the time-triggered paradigm.
Since these demands will never be simultaneous, adding them
overestimates the cumulative demand.

In the next sections we make use of the bricks presented so
far to study offsets between the traces from distinct modules
and develop more accurate schedulability conditions able to
better cope with multi-module and multi-mode E-TDL. To
reduce the pessimism of Theorem 1 and to provide an exact
characterization of a feasible E-TDL system, it is necessary
to define properly how execution traces in different modules
overlap. It is necessary to study precisely the possible ac-
tivation patterns of modes that are running concurrently in
different modules.

IV. E-TDL MULTI-MODULE AND MULTI-MODE OFFSET
ANALYSIS

A. Module start time instants

Let (mdst, δdst) an instantaneous state of a module Mj .
This state occurs δdst time after the beginning of mdst. The
set start(mdst) of absolute time instants at which module Mj

can start mode mdst is given by the lengths of all the walks
that Mj may travel from its initialization up to the beginning
of mdst.

start(mdst) = {|w| | head(w) = Init[Mj], tail(w) = mdst}

In the following we give some conditions to exploit tasks,
modes, and modules relationships. The schedulability analysis
of multi-module multi-mode E-TDL systems will benefit from
these conditions. The statements of these conditions are based
on paths.

Definition 7 (Greatest Common Divisor of Path). The
greatest common divisor gcd(p) of a path p is the greatest
common divisor of all mode switch periods making this path
and of the period of its last mode.

Defining T ′sw(mk,mk+1) = Tsw(mk,mk+1)
gcd(p) , the length of a

walk in Equation (4) can be rewritten as:

|w| = gcd(p)

n∑
j=1

µkT
′
sw(mk,mk+1). (13)

All the pairs T ′sw(mk,mk+1) within a path p are mutually
prime, and a walk w of p is a linear combination of these
coprime integers. From the Frobenius problem statement [21],
[24] it follows that, given a set of relatively prime positive
integers a1, . . . , an, any natural number larger than some
bound noted as F (a1, . . . , an) can be expressed as a linear
combination of a1, . . . , an. Then, for a given path p the lengths
of its potential walks, and so the start instants of the last mode
in these walks, fall in the set of all natural multiples of gcd(p).
A generic destination mode mdst can begin at the time instants
in start(mdst), and it is

start(mdst) ⊂
⋃

p∈Pdst

{n gcd(p) |n ∈ N} (14)

where Pdst is the set of all the paths leading from the
initial mode to the destination mode mdst. Then (mdst, δdst)
can be observed at time t = tstart(mdst) + δdst where
tstart(mdst) ∈ start(mdst).

B. Time distance between mode starts in distinct modules
We now evaluate the time distances that can separate

start instants of the modes running in distinct modules. The
proposed approach is derived from the work of Pellizzoni and
Lipari [20] that is applied to the analysis of the real-time
periodic tasks with offsets.

The following lemma characterizes the time distances be-
tween activations of two modes in two distinct modules.

Lemma 1 (Interval between two modes). The time distance
between start instants of mode ma ∈Modes[Ma] and mode
mb ∈Modes[Mb] with Ma,Mb ∈ Modules and Ma 6= Mb,
lies within the set⋃

pa∈Pa,pb∈Pb

{α gcd (pa ∪ pb) |α ∈ Z}. (15)

Pa is a set of paths leading from Init[Ma] to ma and Pb is
a set of paths leading from Init[Ma] to mb.

Proof: The difference ∆start(ma,mb) between start in-
stants of mode ma and mode mb which were reached by
traversing respectively path pa and path pb may be expressed
using Equation (14):

∆start(ma,mb) =

tstart(ma)− tstart(mb) = n1 gcd(pa)− n2 gcd(pb)

According to the Bézout’s identity [3], for any non zero
integers c and d there exist integers x, y ∈ Z such that
cx + dy = gcd(c, d) and every integer of the form cx + dy
is a multiple of gcd(c, d). This implies that the values of
∆start(ma,mb) are multiples of gcd (gcd(pa), gcd(pb)). Be-
cause the greatest common divisor operation satisfies the
property of associativity [12], the last term can be rewritten
as gcd (pa ∪ pb).

The following Lemma refines Lemma 1 by evaluating
precisely the time intervals that can separate the start instants
of two concurrent modes instances.

Lemma 2 (Interval between two concurrent modes). Given
mode ma ∈ Modes[Ma] and mode mb ∈ Modes[Mb] where
Ma,Mb ∈ Modules such that Ma 6= Mb. If the current
instance of mode mb started no later than the current instance
of mode ma, then the time distances between starts of these
two instances lie inside the following set:⋃

pa∈Pa,pb∈Pb

{α gcd(pa ∪ pb)}, (16)

where α ∈ N : 0 ≤ α gcd(pa ∪ pb) < T [mb].
Proof: For α = 0 the most recent instances of ma

and mb start exactly at the same time. The previous possible
mode’s mb activation points are moved back by multiples of
gcd(pa ∪ pb) as explained in Lemma 1. From some α value,
start instants of mode mb belong to the previous mb instances

(terminated before the activation of the current one). Since the
only considered instances of mode mb should be these which
run concurrently with ma, the value of α gcd(pa ∪ pb) cannot
exceed the length of the period T [mb].

The above relation holds for a pair of modes. We generalize
this result to the case of a compound system of more than two
modules.

Lemma 3 (Intervals between n modes). Let Modules′ (
Modules be a set of n − 1 E-TDL modules M1, . . . ,Mn−1
where n : 3 ≤ n ≤ |Modules| and m1, . . . ,mn−1 be n − 1
modes each belonging to a different module in Modules′.
Let Mn ∈ {Modules−Modules′} and mn ∈ Modes[Mn].
Suppose that the current instances of modes m1, . . . ,mn−1
and mn are running at the same time and every mode mk

(k ∈ N : 1 ≤ k ≤ n) has been reached by taking a path pk.
Suppose also that mode m1 started its most recent activation
no sooner than all the other modes (∀k > 1 : δ1 ≤ δk).
If each mode mk ∈ Modules′ (1 < k < n) started
αk gcd(p1∪pk) time before mode m1, then the possible offsets
that separate the start of mn and the start of m1 are given
by αn gcd(p1 ∪ pn), αn ∈ N and must satisfy the following
conditions:

1. 0 ≤ αngcd(p1 ∪ pn) < T [mn]

2. ∀k ∈ N : 1 < k < n,∃r ∈ Z :

αn gcd(p1 ∪ pn) =

αk gcd(p1 ∪ pk) + r gcd(pk ∪ pn).

Proof: The first condition results from Lemma 2. The
second condition anchors the start instant of mn with re-
spect to the start instants of the other modes. Each mode
mk : 1 < k < n starts αk gcd(p1 ∪ pk) time units before the
start of m1 and is not finished by this time. From Lemma 1
it follows that the start instant of mn can occur only at time
points that lie in the distance r gcd(pk ∪ pn) from the start of
mk. This relation is expressed by the second condition.

For an E-TDL system defined by a set Modules, the point
of interest is to identify all the relations between concurrently
running modes m1, . . . ,m|Modules| in distinct modules of the
system. These modes are reached by walking along paths
p1, . . . , p|Modules|.

Algorithm 1 VerifyStartInstants(p1, . . . , pn,α2, . . . , αn)
Require: ∀1 ≤ k ≤ n : pk is a path to mode mk

Require: Lemma 3 holds for p1, . . . , pn−1 and α2, . . . , αn−1

Ensure: Lemma 3 holds for p1, . . . , pn and α2, . . . , αn

1: if not 0 ≤ αn gcd(p1 ∪ pn) < T [mn] or kn /∈ N then
2: return false
3: end if
4: for k ← 2, n− 1 do
5: diff := αn gcd(p1 ∪ pn)− αk gcd(p1 ∪ pk)
6: rem := diff mod gcd(pk ∪ pn)
7: if rem 6= 0 then
8: return false
9: end if

10: end for
11: return true

Algorithm 1 makes use of Lemma 3. Given α2, . . . , αn−1
that realizes mode starts setup according to Lemma 3 for
n − 1 modes, it checks if introduction of αn for a n-th
mode characterizes a realizable mode starts setup for these n
modes. We look for a set α(|Modules|)(p1, . . . , p|Modules|) of
all the tuples (α2, α3, . . . , α|Modules|) meeting conditions of
Lemma 3. These tuples represent all the valid modes offsets.
The set α(|Modules|)(p1, . . . , p|Modules|) can be obtained by
applying Algorithm 2, where initially the set α(n=2) of all α2

fulfilling Lemma 2 for modes m1 and m2 is computed. Then,
by incrementing n from n = 3, the tuples (α2, . . . , αn) are
estimated according to Lemma 3, till n = |Modules|.

Algorithm 2 FindStartInstants(p1, . . . , p|Modules|)

Require: ∀Mj ∈Modules : ∃mk ∈Modes[Mj]
Require: ∀1 ≤ k ≤ |Modules| : pk is a path to mode mk ∈Modes[Mk]
Ensure: ∀(α2, . . . , α|Modules|) ∈ α(|Modules|) Lemma 3 holds

1: α(2) = {α2 | Lemma 2 holds for α2 and paths p1 and p2 }
2: for n← 3, |Modules| do
3: α(n) := ∅
4: for all (α2, . . . , αn−1) ∈ α(n−1) do
5: for all αn : 0 ≤ αn gcd(p1 ∪ pn) < T [mn] do
6: if Lemma 3 holds for (α2, . . . , αn−1, αn) then
7: α(n) := α(n) ∪ (α2, . . . , αn−1, αn)
8: end if
9: end for

10: end for
11: end for
12: return α(|Modules|)

C. Observable Parallel Configurations
An external observer of an E-TDL system can describe

its state at a particular time instant of the run as a snap-
shot. This snapshot describes the modes and mode times
in each concurrent module at that moment. We name this
snapshot a parallel configuration of the system denoted as
ζ = ((m1, δ1), . . . , (mn, δn)) where n = |Modules|, ∀Mj ∈
Modules mk ∈Modes[Mj] and δk is the current mode time
in mk.

A parallel configuration is observable if its modes offsets
are in accordance with conditions of Lemma 3 (mode offsets
can be found by applying Algorithm 2).

Definition 8 (Observable Parallel Configuration). Given an
E-TDL system composed of n Modules (n = |Modules|)
a parallel configuration ζ = ((m1, δ1), . . . , (mn, δn)) is
observable if there exists (α2, . . . , αN) ∈ α(n)(p1, . . . , pN)
such that:

∀k, 1 < k ≤ n : (17)
(δk − δ1 + T [m1]) mod T [mk] = αk gcd(p1 ∪ pk)

Each of these observable parallel configurations will be
analyzed and checked for feasibility.

It may happen that the start instant of some mode can
occur at any mode time of any other concurrent mode. Given
modes m1, . . . ,mn running in parallel such that each mode
mk (1 ≤ k ≤ n) has been reached by path pk, then a mode
mx (1 ≤ x ≤ n) can start its execution at whatever mode
time of any other mode mk if ∀k 6= x : gcd(px ∪ pk) = 1.

Furthermore, if the above condition is met not only for some
of concurrent modes but for all of them, it can be deduced that
any combination of mode times in different modes defines an
observable parallel configuration. Given modes m1, . . . ,mn

running in parallel such that each mode mk can be reached
by path pk ∈ Pk where Pk is the set of all the paths
leading from the initial mode to mode mk. Any mode mk

can start its execution at any time instant of concurrent modes

if ∃P ∈
n∏
k=1

Pk : ∀pk, pk′ ∈ P, gcd(pk ∪ pk′) = 1.

In that case all the possible parallel configurations are
observable. Consequently, the execution traces with the largest
processor demand can be simultaneous. Then Theorem 1 can
be used without any overestimation. Otherwise, the following
exact analysis can be performed.

V. E-TDL EXACT EDF SCHEDULABILITY

The feasibility condition we derive for an E-TDL system
running under EDF on one processor makes use of offsets and
task relationships. In order to be schedulable, for any observ-
able parallel configuration, the maximal processing demands
of execution traces that begin at that particular configuration
cannot exceed the processing resources in any time interval.
The following theorem guarantees schedulability of an E-TDL
system.

Theorem 2 (Exact Schedulability of an E-TDL System). Let
be an E-TDL system defined by a set of n modules Modules
(Mk ∈Modules, 1 ≤ k ≤ n) such that:

n∑
k=1

max
m∈Modes[Mk]

{U(m)} ≤ 1 (18)

If for every observable parallel configuration
ζ = ((m1, δ1), . . . , (mn, δn)) and every time interval
∆ > 0:

n∑
k=1

maxdfMk
(mk, δk,∆) ≤ ∆ (19)

where (mk, δk) is the state of module Mk in the observable
parallel configuration ζ, then the E-TDL system is schedulable
under EDF on one processor.

Proof: The proof of this theorem is similar to the proof
of Theorem 1 and can be also derived from Lemma 3.4 in [4].
We designate by t1 a time instant at which a parallel con-
figuration ζ was observed. For ∆ > 0, the maximal demand
function maxdfMk

(mk, δk,∆) quantifies the greatest possible
resources that can be requested by module Mk ∈ Modules
in the interval [t1, t2] such that ∆ = t2 − t1 and Mk is
running in (mk, δk) at the time instant t1. The total amount
of processing time available in the interval [t1, t2] is equal to
∆. By summing up the maximal demands from the particular
modules we obtain the resources that must be granted for E-
TDL system in the time interval [t1, t2]. If these resources do
not exceed ∆, E-TDL system is schedulable.

A. Feasibility Bound

In this section we derive an upper bound for the time interval
∆ in Theorem 2 so that condition 19 becomes fully compu-
tationnaly tractable. If an E-TDL system is not schedulable,
then some of its tasks will miss its deadline in the time interval
that is no longer than this bound.

Every interval ∆ can be seen as a composition of three
adjacent intervals: ∆1,∆2 and ∆3. Interval ∆2 spans over
the time from the first to the last hyperperiod point in ∆,
whereas ∆1 and ∆3 cover the pieces of execution occurring
respectively before and after ∆2. Figure 6 illustrates the above
described ∆ decomposition.

M1

0 H[m1] 2H[m1] 3H[m1] H[m2] 2H[m2] H[m2] H[m3] H[m4] 2H[m4]

0 T [m1] T [m2] T [m3] T [m4]

∆

∆1 ∆2 ∆3

Fig. 6: Decomposition of ∆ into three intervals.

The maximum value of demand function in any interval ∆1

for a module Mj , denoted by dfMj
(∆1), is given by:

max dfMj (∆1) = max
mk

dfMj (mk, rmin(mk), H[mk])

≤ max
mk

(U(mk)H[mk])

where rmin(mk) is the earliest release of some task from mode
mk ∈Modes[Mj] occurring after the beginning of this mode.
In like manner, the maximum value of demand function for
any interval ∆3, denoted by dfMj

(∆3), can be found:

max dfMj
(∆3) = max

mk

dfMj
(mk, 0, dmax(mk))

≤ max
mk

(U(mk)H[mk])

where dmax(mk) is the latest deadline of some task from mode
mk ∈Modes[Mj] before its hyperperiod H[mk].
The maximum value of demand function for any interval ∆2,
covering full executions of the hyperperiods of subsequent
modes from the first hyperperiod in the first mode to the start
of the last hyperperiod in the last mode inside interval ∆, is
denoted by dfMj

(∆2) such that:

max dfMj
(∆2) ≤ ∆ max

mk

U(mk) (20)

where mk ∈Modes[Mj].
As there is no tasks that can be started in one of these intervals
and having deadline in another, for any ∆ and any valid mode
time δk in mode mk from module Mj the following relation
is derived:

∆ max
mk

U(mk) + 2 max
mk

(U(mk)H[mk]) ≥

max dfMj
(∆1) + max dfMj

(∆2) + max dfMj
(∆3)

≥ maxdfMj
(mk, δk,∆)

where mk ∈Modes[Mj].
Similarly to the reasoning proposed by Baruah [4], [5], if the
system is not schedulable, there exists some ∆ for which the
second condition of Theorem 2 is violated:∑

Mj∈Modules

maxdfMj
(mk, δk,∆) > ∆

Taking into account beforehand obtained properties bounding
function maxdfMj

(mk, δk,∆), an overflow observed in ∆
implies that:∑
Mj∈Modules

(
∆ max

mk

U(mk) + 2 max
mk

(U(mk)H[mk])

)
> ∆

Thus, it is sufficient to check the feasibility for the intervals
that are no longer that:

∆ <

2×
∑

Mj∈Modules

max
mk

(U(mk)H[mk])

1−
∑

Mj∈Modules

max
mk

U(mk)
(21)

where mk ∈Modes[Mj].

VI. TEST CASE

A sample E-TDL system is studied to gain insight into the
key aspects of the proposed EDF schedulability analysis.

The test case is a 3-modules E-TDL system, where the
modules M1,M2,M3 ∈Modules execute on the same node.
Each module defines its modes together with modes switches
as it is indicated on Figure 7 (the topmost mode in each
module is considered to be the initial mode). Periods, mode
switch periods as well as all the task parameters making up
the particular modes are presented in Table 1.

m11

m12

M1

m21

m22

M2

m31

M3

Fig. 7: A 3-modules E-TDL system and its mode switches

Module mode T Tsw tasks

M1
m11 10 10 τ111(0, 2, 6, 10), τ112(0, 1, 5, 5)
m12 8 - τ121(2, 1, 2, 8)

M2
m21 4 4 τ211(0, 1, 4, 4)
m22 8 8 τ221(1, 1, 1, 8)

M3 m31 8 - τ311(2, 1, 1, 8)

Tab. 1: Modes and tasks properties

On the first attempt, we apply Theorem 1 to verify system
schedulability. Since the sum of the maximal utilization factors
for the modes in distinct modules is not greater than 1, we
verify condition given by Equation (12). In Figure 8, a series
of plots illustrates maximal demand bound functions mdbfM1

,

Fig. 8: Maximal demand functions

mdbfM2 , mdbfM3 , and their sum which is compared to the
length of the interval ∆. As can be seen, the condition of
Theorem 1 cannot be satisfied in ∆ = 1 and ∆ = 2.
For ∆ = 1, the resource demands of traces σM2

=
(m22, 1, 2, ∅, ∅, 0) and σM3

= (m31, 2, 3, ∅, ∅, 0) are equal to
one. The demand function of every execution trace of length
1 in M1 is equal to 0.
For ∆ = 2, the demand functions of traces σM1 =
(m12, 2, 4, ∅, ∅, 0), σM2

= (m22, 1, 3, ∅, ∅, 0), σ′M2
=

(m22, 0, 2, ∅, ∅, 0), σM3
= (m31, 2, 4, ∅, ∅, 0), and σ′M3

=
(m31, 1, 3, ∅, ∅, 0) are equal to one.

With the help of the offset analysis and Theorem 2, it can
be verified if the revealed above execution traces may start
actually at the same time, as assumed by Theorem 1. We verify
whether the parallel configurations corresponding to the starts
of these execution traces are observable or not.

For ∆ = 1, the above identified parallel configura-
tions for which the system is not schedulable are given as
((m1, δ1), (m22, 1), (m31, 2)) where (m1, δ1) can be an arbi-
trary state of module M1. Consequently, we have to study the
time distances that can separate starts of concurrent instances
of modes m22 and m31.

As a first step, for every module, the paths leading to the
appropriate mode from the initial mode must be found. Table 2
shows these paths together with their greatest common divisor
values (path to m12 is not considered for ∆ = 1).

path gcd
p12 m11 → m12 2
p22 m21 → m22 4
p31 m31 8

Tab. 2: Greatest common divisor of paths

The greatest common divisors gcd(pa ∪ pb) for pairs of
paths leading to modes in different modules are calculated
in Table 3. According to Lemma 1, for p22 = 4 and p31 = 8,
every time distance separating starts of these two modes is a
multiple of gcd(p22 ∪ p31) = 4. From Lemma 2 we obtain

p12 p22 p31
p12 - 2 2
p22 2 - 4
p31 2 4 -

Tab. 3: Greatest common divisors for pairs of paths leading to
the modes that can execute concurrently

α(p22, p31) = {0, 1}. Mode m31 can start either at the same
time as m22 (0 × gcd(p22 ∪ p31)) either 4 time units before
(1 × gcd(p22 ∪ p31)). Equation (18) is not satisfied by any
coefficient α(p22, p31) for module M2 state (m22, 1) and
module M3 state (m31, 2), since (2−1+8) mod 8 /∈ {0, 4}. A
parallel configuration where these two module states coincide
is not observable and therefore the execution traces σM2 and
σM3

cannot start at the same time instant. It can be concluded
that the system is schedulable in the interval ∆ = 1.

For interval ∆ = 2, the parallel configurations for which
the schedulability of the system cannot be guaranteed by
Theorem 1 are as follows:

{((m12, 2), (m22, δ22), (m31, δ31))

| δ22 ∈ {0, 1}, δ31 ∈ {1, 2}}

Since all these configurations occur during concurrent exe-
cution of modes m12,m22 and m31, the relationship between
their starts should be established.

We apply Lemma 2 to paths leading to modes m12 and
m22 (see Table 2) under the assumption that the current
instance of mode m12 is invoked no earlier than the current
instance of m22. It results in values of α2 ∈ α(2)(p12, p22)
which correspond to the distances (α2 × gcd(p12 ∪ p22))
between starts of m12 and m22 concurrent instances. By
considering path leading to mode m31, from Lemma 3, we
have α(3)(p12, p22, p31) of tuples (α2, α3). Each tuple (α2, α3)
describes a mode activation pattern in which m22 and m31

started respectively α2×gcd(p12∪p22) and α3×gcd(p12∪p31)
instants before m1. Table 4 shows all valid tuples (α2, α3)
together with possible walks starting at the initialization of
every module and resulting in the activation pattern reflected
by this tuple.

(α2, α3) example walk
w12 w22 w31

(0, 0) (m11, 4) (m21, 10) (m31, 5)
(0, 2) (m11, 2) (m21, 1), (m22, 2) (m31, 2)
(1, 1) (m11, 1) (m21, 2) (m31, 1)
(1, 3) (m11, 3) (m21, 5), (m22, 1) (m31, 3)
(2, 0) (m11, 4) (m21, 5), (m22, 2) (m31, 5)
(2, 2) (m11, 2) (m21, 2), (m22, 1) (m31, 2)
(3, 1) (m11, 1) (m21, 1) (m31, 1)
(3, 3) (m11, 3) (m21, 4), (m22, 1) (m31, 3)

Tab. 4: Example walks for all (α22, α31) ∈ α(3)(p12, p22, p31)

Having values of α(3)(p12, p22, p31) at our disposal, we
define all the observable parallel configurations for concurrent
execution of modes m12, m22 and m31. Table 5 represents,

for module’s M1 state (m12, 2), the possible module M2 and
M3 states that satisfy Equation (18).

(0,0) (0,2) (1,1) (1,3) (2,0) (2,2) (3,1) (3,3)
δ22 2 2 4 4 6 6 0 0
δ31 2 6 4 0 2 6 4 0

Tab. 5: Parallel configurations (m12, 2), (m22, δ22), (m12, δ31)

It can be seen from Table 5 that the parallel configurations
at which the execution traces requesting 1 unit of computation
over interval ∆ = 2 start are never activated simultaneously.
Therefore, the sum of maximal demand functions in ∆ = 2,
for any observable parallel configuration, is never larger than
2. The system is schedulable according to Theorem 2.

VII. CONCLUSION AND FUTURE WORK

In this paper we extended the TDL task model into E-TDL,
and proposed the condition for the feasibility of an E-TDL
system scheduled by EDF on one processor. A methodology
to exhibit all the possible timing configurations of the system
in presence of mode switches has been introduced. Based on
the well-founded concept of processor demand we provided
techniques to describe resource requirement of such a system.

One of the issues to be addressed in the future is the
reduction of the complexity of our solution. This can be
achieved by optimizing computation of demand functions and
investigating if there exist some point from which they can be
periodic. The feasibility bound, in certain cases, could be also
estimated more tightly. If in the tested interval the existence of
the point where all the modes from distinct modules terminate
synchronously can be stated, it would not be necessary to
continue the analysis beyond this point.

Another interesting proposal may be running all the modules
in temporal isolation. The question that should be answered
then would be the choice of the most suitable resource
reservation pattern.

Concerning the reactivity of the system, we suggest that
mode switches may operate not only at instants that are
hyperperiods but also at some possible other idle instants in
the mode. Some tasks whose completion is not vital for the
consistency of the system, might be aborted across the mode
switches.

REFERENCES

[1] B. Andersson. Uniprocessor EDF Scheduling with Mode Change.
In Proceedings of the 12th International Conference on Principles of
Distributed Systems, OPODIS ’08, pages 572–577, Berlin, Heidelberg,
2008. Springer-Verlag

[2] C. M. Bailey. Hard real-time operating system kernel. Investigation of
mode change. Task 14 Deliverable on ESTSEC Contract 9198/90/NL/SF
British Aerospace Systems Ltd., 1993

[3] O. Bordellès and V. Bordellès. Arithmetic Tales. Universitext Series.
Springer, 2012.

[4] S. K. Baruah, L. E. Rosier, and R. R. Howell. Algorithms and Complexity
Concerning the Preemptive Scheduling of Periodic, Real-Time Tasks on
One Processor. Real-Time Syst., 2(4):301–324, Oct. 1990.

[5] S. K. Baruah. Feasibility Analysis of Recurring Branching Tasks. In
ECRTS, pages 138–145, 1998.

[6] G. C. Buttazzo. Hard Real-time Computing Systems: Predictable Schedul-
ing Algorithms And Applications (Real-Time Systems Series). Springer-
Verlag TELOS, Santa Clara, CA, USA, 2004.

[7] G. C. Buttazzo, L. Abeni, and S. S. S. Anna. Elastic Task Model For
Adaptive Rate Control. In IEEE Real-Time Systems Symposium, pages
286–295, 1998

[8] A. Easwaran, M. Anand, and I. Lee. Compositional Analysis Framework
Using EDP Resource Models. In RTSS, pages 129–138, 2007.

[9] E. Farcas. Scheduling Multi-Mode Real-Time Distributed Components.
PhD Thesis, Department of Computer Science, University of Salzburg,
July 2006.

[10] E. Farcas, C. Farcas, W. Pree, and J. Templ. Transparent Distribution of
Real-Time Components Based on Logical Execution Time. In LCTES,
pages 31–39, 2005.

[11] N. Fisher and M. Ahmed. Tractable Real-Time Schedulability Analysis
for Mode Changes under Temporal Isolation. In ESTImedia, pages 130–
139, 2011

[12] J. V. Z. Gathen and J. Gerhard. Modern Computer Algebra. Cambridge
University Press, New York, NY, USA, 2 edition, 2003.

[13] T. A. Henzinger, B. Horowitz, and C. M. Kirsch. Giotto: A Time-
Triggered Language For Embedded Programming. In EMSOFT, pages
166–184, 2001.

[14] C. M. Kirsch and A. Sokolova. The Logical Execution Time Paradigm.
In Advances in Real-Time Systems, pages 103–120, 2012.

[15] C. L. Liu and J. W. Layland. Scheduling Algorithms for Multiprogram-
ming in a Hard-Real-Time Environment. J. ACM, 20(1):46–61, 1973.

[16] N. F. Martinek and W. Pohlmann. Mode Switching in GIA – An
ADA Based Real-Time Framework. Department of Scientific Computing,
University of Salzburg.

[17] A. K. Mok. Fundamental design problems of distributed systems for
the hard-real-time environment. PhD Thesis, Laboratory for Computer
Science, Massachusetts Institute of Technology, USA, 1983.

[18] P. Pedro. Schedulability of Mode Changes in Flexible Real-Time
Distributed Systems. PhD Thesis, Department of Computer Science,
University of York, September 1999.

[19] P. Pedro and A. Burns. Schedulability Analysis for Mode Changes in
Flexible Real-Time Systems. In ECRTS, pages 172–179, 1998.

[20] R. Pellizzoni and G. Lipari. Feasibility Analysis of Real-Time Periodic
Tasks with Offsets. Real-Time Systems, 30(1-2):105–128, 2005.

[21] J. Ramı́rez-Alfonsı́n. Complexity of the Frobenius problem. Combina-
torica, 16:143–147, 1996.

[22] J. Real and A. Crespo. Mode Change Protocols for Real-Time Systems:
A Survey and a New Proposal. Real-Time Syst., 26(2) :161–197, March
2004

[23] L. Santinelli, G. C. Buttazzo, and E. Bini. Multi-Moded Resource Reser-
vations. In IEEE Real-Time and Embedded Technology and Applications
Symposium, pages 37–46, 2011.

[24] J. Shallit. The Frobenius Problem and Its Generalizations. In M. Ito and
M. Toyama, Developments in Language Theory, volume 5257 of Lecture
Notes in Computer Science, pages 72–83. Springer Berlin Heidelberg,
2008.

[25] N. Stoimenov, S. Perathoner, and L. Thiele. Reliable Mode Changes
in Real-Time Systems with Fixed Priority or EDF Scheduling. In
Proceedings of Design, Automation and Test in Europe, 2009 , pages
99–104, Apr 2009. IEEE.

[26] J. Templ. Timing Definition Language (TDL) Specification 1.5 Tech-
nical Report T024, Department of Computer Science, University of
Salzburg, Austria, October 2008.

[27] L. Thiele, S. Chakraborty, and M. Naedele. Real-Time Calculus for
Scheduling Hard Real-Time Systems. In The 27th Annual International
Symposium on Computer Architecture(ISCA), volume 4, pages 101 –104
vol.4, 2000

[28] K. Tindell and A. Alonso. A very simple protocol for mode changes in
priority preemptive systems. Technical report, Universidad Politécnica de
Madrid, 1996

[29] K. Tindell, A. Burns, and A. Wellings. Mode changes in priority pre-
emptively scheduled systems. In Proceedings of the Real Time Systems
Symposium, pages 100–109, 1992

