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A Method for Flexible Aircraft LFT Modelling

J. Torralba and F. Demourant and G. Puyou and G. Ferreres

Abstract— This paper presents a method to obtain a Linear A
Fractional Transformation (LFT) model from a set of numerical
flexible aircraft models. The core of the method lies in a

polynomial interpolation, but before this step, some cautus

treatments must be applied to the numerical models for them w M z

to be interpolable. First the models have to be reduced to be

exploitable, while ensuring they all keep the same consiste U Y
modal content and avoiding numerical problems. Second the )

interpolation of the reduced models state representationgan Fig. 1. LFT model structure

only be processed if the state vector has the same physical
meaning for the whole model set (state vector consistency).

For this problem, a specific state coordinate transformatia  ; ; : TR :
is emphasized. After models are interpolated, the LFT is including flexible aspects). Indeed their intrinsic acciing

computed with the LFR toolbox’s generalized Morton method. for model parametric variations enables to directly design

Then the LFT accuracy can be improved through a biconvex parameterized control laws (i.e. self-scheduling lawd)iciv
optimization. removes the industrially-famous tricky step of a posteéiioer

terpolation of the laws. This way, LFT models may contribute
I. INTRODUCTION towards simplifying present-day control design algorithm
The Linear Fractional Transformation (LFT, see Fig. 1) The paper is outlined as follows. Section Il presents the
modelling of aeroelastic (i.e. flexible) models was investioverall algorithm: first a reduction method for a set of
gated in [1], [2] and [3] for flutter analysis. These methodsieroelastic models is introduced, for the reduced models to
are based upon the knowledge of the parametric structupe mutually consistent. An interesting state-space basis i
of the aeroelastic equation of motion (1) to build thealso emphasized for the reduced models to be interpolable.
corresponding LFT with respect to flight parameters (e.grhen an algorithm is proposed to optimize the LFT accuracy.
Mach number) and mass cases. In this equatidnC and Finally in section Ill, the algorithm is illustrated with a
K are respectively the mass, damping and stiffness of thkexible aircraft LFT modelling example.
aircraft structure. The aerodynamic contribution inveltiee
dynamic pressurg and the unsteady aerodynamic forces || Al GORITHM FOR FLEXIBLE AIRCRAFT LFT
modelled by@, which depends on flight parameters (Mach MODELLING
number and airspeed).
Let us consider a set of linear models of a flexible aircraft
Mij+ Cn+ Kn = qQn (1)  (Gi(s))ien,n corresponding to a set of value&')ie[LN] of
a vectoré gathering some significant flight and mass cases

In practice, this equation is evaluated at one flight pOi'}Sarameters (e.g. airspeed, Mach number, external fuel tank
and one mass case and then the corresponding aeroelaﬁltm:l rate, ...).

model is reduced. If a set of models is considered, generaIIyWe would like to compute an LFT modéf, (M (s), A)

the remaining modal content is not consistent from on at matches this set of models (from both modal and
flight point and mass case to another, leading to mode§ equential points of view), and that has sensible vari-
with various number of states, and for which the parametné*(tlons between theV points. Hence the problem is to

dependencies information has been lost. Hence the methﬁ%mme the errormaz;c . vil|Fu(M(s), AY) — Gy(s)|
16 s 9 o]

that is presented in this paper, which is fully numeric a3 ith respect toM (s) and to the model perturbation —
it is assumed that the only input data is a set of mode I ag(8115,, ..., 61, ) Structure.
119 IN

(Gi(s))ien,n) describing the aeroelastic dynamics of the The guideline of the algorithm is to get a set of

aircraft for a set of flight parameters and mass cases. state representatlor(s41,Bl,Cz,D Jicin Of the models
other words, the parametric structure is unknown a prior L
L? )ici1,n] that can be interpolated. Th|s means that the
sta

Of course this method can also be used for other types
te space matrices coefficients must be of same nature from
dynamic models for which the analytic structure is unknown
one flight point to another. The algorithm then has roughly

It is worth pointing out that LFT models are deeply inter- .
esting for full flight domain aircraft control design (pdslyi three steps : reduce the m_odeI§ number of staFes, make
the models state representations interpolable, and witee

jose.torralba@airbus.com, fabrice.demourant@onera.fr guil- them W't.h rt_aspect to vectof parameter_s, “ght before the
hem.puyou@airbus.com, gilles.ferreres@onera.fr LFT realization. These steps are explained hereafter.



A. Model reduction At this stage, having computed the N sets of modes, the N

The reduction step is necessary to get exploitable modé&atriceS(Ai.)ie[}-,N] can be determined using a modal state
as flexible aircraft models generally have a lot of stateg, s§€Presentation :
300 states. This reduction step is already a difficult taskesi

the reduced models must be interpolable. So the reduction is R S 0 0
required to provide models with the same number of modes, -3\ RN 0 0
that must also be of same nature. There is no real formalismgmod _ . @)
to declare that two modes for two different flight points are , ,
of same nature, this mainly relies on the physical sense of 0 0 %(/\:l-r) C‘\y()‘%z)
| 0 0 =S0L) RO

the engineer. But it can be said that a same mode varies
with respect to the flight point and the mass case inside aThen it remains to find B;, C;, D;);ci,n) Matrices, by
restricted area of the complex plane (see Fig. 2(a)). approximating the initial model$G;(s));c;1,n) frequency
responses. This problem turns out to be a biconvex mini-
mization of the Input/Outputl(/O) frequential error, which

is nOtedAFi(ju}) = (C’l(]wI — Ai)ilBi + D; — Gz(jw))

P ok
. o R * :, This quantity is used to define a frequential criterion that
- o ¢ is expressed in two different manners: the first one (3)
R enables to minimize the error with respect to b@h);c1, v
A - and (D;);e;1,n7, and the second one t0C;);c;; v and
. , o\, (Di)ien,n (4)-
1,0 o
JAFAF =
> trace (AF; (jw;) AF;(jw;)) (i1 —w;)  (3)
(a) Modes of same nature (b) Search of closest modes g
Fig. 2. Consistent modes selection strategy
JAFAFs =

The well-known and efficient balanced reduction appears Z Ztmce (AF;(jw;) AFF(jw;)) (wjs1 —wj)  (4)
to difficult to use in this framework, because for each i
model the modes are modified according to observability arWhereF*
controlability properties, which destroys the overall rabd
consistency for the whole set of models.

Modal truncation is interesting because it avoids the pro This reduction method is attractive for two reasons. Birstl

lem of modal content alteration, but it cannot be directl;ghe modes are directly handled, which is convenient to
used due to numerical problems linked with the complexitgOrt them considering the WhoIe' set of models; secondly

of the madels. Finally, the best solution is to handle diyect the biconvex optimization efficiently refines the frequency

t_he_ modes of the_model;; the problem 1S hencg to Selemr@sponses of the reduced models with respect to the referenc
limited number of interesting modes, while ensuring that thmodels

N sets of modes gather the same number of modes that are
of same nature. B. Coordinate transformation for state vector consistency

The first step for modes selection is to chose a refer- a¢ this stage, theN models are reduced, they have the
ence model, say the one in the middle of the parametric, o number of modes which are of same nature.
domain (i.e. model numbet,. ). For this model, only  Now pefore interpolating the state space matrices, it is
the n, modes inside the chosen bandwidfh.. are kept nhecessary to find a state basis ensuring these matrices are
(eigenvaluesA such that|| < 27 fmaz); then it COMes  congistent in terms of states whatever flight point index
to find the closest flight poini; to the reference one \jore precisely, after interpolation of the state matrices
(icr = argminicp n([|6°<7 — 6'[|2)), for the modes t0 s gone the result must be regular modal trajectories as
be as close as possible to their locations at flight poiRfe) a5 frequential responses variations with respect gl
lref (th? closest mode for model numbgr to a particular  h5rameters vectaf (see Fig. 3). This is an efficient test for
mode /\,:ef; corresponding ta,.; is A, such thatky, =  state vector consistency.
argminke[l,nmd]( )\}C:ff - )\fgl )). So fori.;, then, chosen Our research showed that the characteristic polynomial
modes are the closest ones to those correspondirig.jo of the models (5) is of deep interest as regards the modal
(see Fig. 2(b)). After flight point,; is treated, the latter trajectories regularity constraint. This phenomenon can b
becomes the reference one and so on untilXhmodels are explained by the physical nature of this polynomial’s ceeffi
handled. cients (6) that are directly linked with the model frequency

denotes the conjugate transpose of maffix
The frequential error minimization algorithm will thor-
l:g)ughly be presented in section II-E.




.. The frequency response with respect to modal state ma-
----------- & trices can be written :
Worrrnn o )
B Gi(s) = Cmod(s] — Amod)y=1pmed 1 D, (12)

and with respect to regularized companion state matrices :
Fig. 3. A strong constraint : modal trajectories regularity

Gi(s) = CCOMPT(sT — ASO™PTYIBEOMIT L D (12)

responses, and even more directly with the physical differ-

i compr i i
ential equations of the flexible aircraft. The matrixA can readily be expressed in the modal

basis (13), in three steps : firstc°™?" is diagonalized,
then the modes of the obtainegdmatrix are reordered with
d(s) det(sI — A) (5) respect toA™°¢, and finally complex modes are split into

d(s) = s 4cp, 15" P45+ (6) real and imaginary parts, like in (2).

The state basis linked with the characteristic polynomial
is the companion basis, in which the matrix has the form ASOTPT = piA;nodpi—l (13)

From (12) and (13) we have :

0 1 0 0
o o0 . : Gi(s) = CSOMPTPy (s — Ay =L pTi BT L D, (14)
Afomp — . ' 1 0 (7) - - - o
: : And finally the companion state matricds;”"""" and
o 0 -0 1 C™P" are deduced from (11) and (14X{""" and D;
—Cp e ottt TCp are already known) :

This companion state basis is known to provide badly-

conditioned state matrices. So it is hecessary to regelariz compr od

A matrices through a scaling matrik to balance the B; P B;

coefficients values, while keeping the same eigenvalues of oo = gmedpt (15)

course [4]. The same scaling is applied to all models (i.e. _ ) ) _ )

Vi) for consistency. A regularized companion matdg™?" In this regularlz_ed companion basis, experiment shows

is then obtained (8). that the state matricesl;, B;, C;, D;);c[1,n) can be directly
interpolated with respect té parameters, because of the

Acompr — =1 gcompp (8) Modal trajectories regularity that is observed, meanirgy th

state vector is consistent from one flight point to another.

The scaling matrixI” is computed forA;*"*" matrix to
have the same rows and columns norms, as much as possille \Models interpolation and LFT modelling

More precisely,T is a diagonal matrix gathering integer o _ )
powers of two on its diagonal, to avoid roundoff errors (9). 1) I_nterpolat|_on. The state_ space matrices are mter_polgted
in their regularized companion form, through a multivaiat

polynomial structure. This problem can be easily solvedhwit

T = diag(2", ..., 2%=) (9) aleast squares algorithm.
in which (k,),c (1., are the aforementioned integers, inde- 2) LFT realizati(_)n: Once the.interpqlation structure is
pendent ofi index (flight point index). known, the LFT is simply realized with the generalized

ompr o then :  Morton’s method [5] that is implanted in the LFR toolbox
(functiongnor t on. m[6]). This method is the generaliza-
tion of Morton’s method to a polynomial expansion, and it

The final regularized companion matri

0 2k—k g 0 X . " -
_ lies on a singular values decomposition of each matricial
Acompr _ 0 0 : (10) coefficient.
H 0 0 e 2k7lw_k}nm*1
—erhy  —erh o —erh D. Validation of the LFT

wherecr are the regularized characteristic polynomial coef- In order to assess the LFT accuracy, three criteria are
ficients. defined : one evaluates the LFT modal matching with the

Now the state space matrices corresponding to this regeference models (16), and the other two &fg (17) and
ularized companion form (10) must be computed, knowingf, (18) frequential criteria for the frequential matching
them in the modal basis (2). assessment.



Y7 (jw, A)CT(A)
U with 745, (jw) = | X [BIYT (juo, A)CT(8) + D]
55 AL — AL I
€modal = max | = (16) Y (jw, A)B(A)
i€[1,N] SO |areld andHep(jw) = | Xa [C1Y (jw, A)B(A) + Dis]
k=1 I
Whef_e/\?; is the LFT’s k-th mode at flight point numbeand I_f the fII’S.t set of variables of the biconvex optimization is
)\Ze“ refers to the corresponding reference mo@g(s). written as :
) . By
AF;
€m,, = max (M) a7 Do = (51 co. Bm )
ie[1,N] \ 7(G;i(jw)) Doy

in which AF,(jw) = (Fu(M(jw),A") = Gi(jw)) and & where (B )xe(1.m are column vectors to be found, we shall
is the maximum singular singular value on the pulsatioghen have :

continuum ., norm).

trace(AF* (jw)AF (jw)) =
€y = > (i QB — 2R(I{ (jw))Br) + trace(G™ (jw)G (jw))
k=1
1 >, trace (AF} (jw;) AF;(jw;)) Aw, _ _
il d W|th = Hp YH G~ H =
H[lla);/] (\/27T trace (GF (jw;)Gi(jw;)) Q pliw)Hep(jw), (w)Hpp (i)
(18) and (1) re(1,m) are column vectors.
whereAw; = (wj+1 — wj).
In depth validation is of course necessary to check both leeW|se with the second set of variables as :
modal and frequential behaviours of the LFT on the whole T
r_nodel continuum. This step will be illustrated in the apglic ( Cy Doy Dy ) _
tive example. 7'T
p

E. Input/Output error minimization we get :

If the I/O error is not satisfactory, it can be minimized ) .
with a biconvex optimization. This algorithm is an extemsio trace(AF(ju)AF (jw)) =
to the LFT case of the one previously mentioned in paragraph T ) , .
lI-A. In this situation, the minimized criterion (see (3)dn Z(Vk Qe — 2R (A, (jw))) + trace(G(jw)G* (jw))

(4)) depends on the frequential error between the LFT and ¥~

the reference models : with Q —THCD(Jw)HCD(Jw) Hep(jw)G*(jw) =
hT(Jw)
AF;(jw) = (Fy(M(jw), AY) — Gi(jw)) L and (hx)ren,p) @re column vectors.
. hy, (jw)
Let us recall the state representation of an LFT : Back with models indices i.¢, each term of both criterion
i = Ar + Byw + DBu to be minimized ((3) and (4)) has the following quadratic
z = Ciyz + Dpw + Disu (19) Structure :
y = Cuxx + Daw + Dxpu

trace(AF; (jw;) AF} (jw;)) =

The LFT frequency response is then (the model indix cij— 207 fi 5+ 07Q; ;0
dropped for simplicity) : . i . i o
The final expression is a quadratic criterion —

20T f + 07QH, with ¢ = Cijwjt1 —wj), f =
Fu(M(jw),A) = C(A)Y (jw, A)B(A) + D(A) £ ey ) a0 EZEZ o (: o) There
with ¥ (jw, A) = (jwl — A(A) Y, A(A) = A+ B1XaCh, BRI BT

B(A) = Bo+B1XaD12,C(A) = 02+D21XA01. D(A) = eX|sts an analytical minimum ﬂt_ Q' f, which makes each
Doo + D1 XA D1, and Xa = A(I — D11 A)7L. loop of the biconvex optimization very fast.
Hence the two expressions of the frequential error : I1l. APPLICATION

This application illustrates the previously presented
By method of LFT modelling from a set of numerical models
H G(jw)

AF(jw) Dy corresponding to a set of flight point and mass cases. These
Daa models are aircraft longitudinal flexible models that are

= ( Cos D1 Doy ) Hep — G(jw) wanted to be modelled as an LFT for control design purpose.



A. Description of the model

The set of aircraft model$G;(s));c[1,n) correspond to
variations of the parametefis= ( OT' Ma V. ), being
respectively the outer tanks filling rate, Mach number and
conventional airspeed.

These parameters vary inside the domain depicted in Fig.
4. For interpolation,N = 27 points are chosen inside this
parametric domain.

o Fig. 6. Frequential comparison of initial (.-) and reduceddels (-)
Nmma.z A = diag(OT x Is0, Ma x I30, Ve X Lyo)
A S e ve dim(A) = 110

D. Validation of the LFT

The values of the validation criteria (16), (17) and (18)
for our example are gathered in table I.

Fig. 4. LFT model representativity parametric domain. &dines:
parametric domain; crosses: reference points for LFT niiadel

The inputs of the model are the elevadgrand the ailerons TABLE |
in symetric mode&psym = (dpicft + OPright) : LFT VALIDATION
The outputs are critical wing loads i.e. bending load %) P (73 p— 3]
R . . moda o) 2
WMX and twisting loadiW’ MY at wing root. 1.12x 10~ | 3.83x 10 7 | 1.94 x 107

B. Modéel reduction

The intial state space flexible models have an average of There is aimost a perfect match between the LFT and the
270 states. By setting the would-be LFT representativene3gt of reference models?;(s))c(1,27)-
bandwidth to 8 Hz £ 50 rad/s), the number of states drops= Regularity check-up

to 18 i.e. 9 flexible modes (see Fig. 5). . . . .
When the 27 consistent sets of 9 modes are formed.Since an LFT is a continuum of models, the previously

it remains to reconstruct thé/O responses of the initial built LFT has also to be checked-up between the flight points

models with this limited number of modes, to get the reduceS€d 1© design it. It must be proven that the continuum of

models (an example of reduction result for one flight poinf?des (i.e. modal trajectories wheénvaries) and the fre-
is given in Fig. 5 and 6). guency response continuum are both regular. No "overshoot”

must be observed, and ideally the continuum should vary
linearly between two reference flight points.
) " In our application, the principal directions of the paramet
ric domain are explored to assess the regularity propesfies
« E the LFT.
- . The modal trajectories (see Fig. 7) show that the LFT
® ) has no unexepected behaviour (i.e. no irregularities)rimse
® of modes. Besides, this proves the interest of charadterist
° o polynomial coefficients for the state vector consistencg in
set of models.
The frequency response continuum (Fig. 8) is fully satis-
factory as well.
These tests are not thorough but the good properties of the
LFT along the domain’s principal directions, together with
. its matching the reference models, are good indicatorssof it
C. LFT construction validity on the whole continuum.
The LFT is then built according to the method presented S )
in 1I-B, I-C and II-C.2. The polynomial terms used for I Efféct of error minimization algorithm
interpolation are computed by expanding the polynomial Now the LFT has been validated in the wake of an exact
(14 OT)?(1 + Ma)*(1 + V.)2. The obtained LFT has the interpolation, it can be interesting to attempt to decrease
following A-block : its complexity. There exists two ways to simplify the LFT

Fig. 5. Modal comparison of initial (x) and reduced modely (o
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Fig. 7. Modal trajectories with respect to OT an{ parameters. X :
reference models modes; o : central model modes

10 15 20
Number of polynomial terms

variation wrt Ve values

Frequential response

variation wrt OT values

Frequential response

Fig. 9. Evolution of frequential error and-block dimension with respect
to the polynomial interpolation complexity

Gain

[V. CONCLUSION

The method presented in this paper proposes to design an
LFT from a set of aeroelastic models. It is definitely adapted
to complex and prominently numerical models, with no
parametric structure knowledge whatsoever. The solutash h
then to involve as simple algorithms as possible to balance
the data complexity. Naturally the least squares algorithm
complexity : one consists in reducing the LFT a posterionised to interpolate the models with a basis of polynomials.
i.e. after the interpolation and the LFT realization (usindg3efore interpolation, two steps are fateful in the procebe:
gnor t on. n), the second one is an a priori approach. Iconsistent reduction of the models and their state reptasen
is the latter that will be detailed because it is more likaly t tions transformation in a regularized companion statesbasi
reduce the LFT complexity, as the former (i.e. a posteriofhis way, the reduced models are made interpolable. After
reduction) is already included ignorton. m (see LFR the LFT is realized through the generalized Morton’s method
toolbox’s functionmi nl f r . mdealing with LFT complexity its I/O accuracy can be optimized with an efficient biconvex
reduction inspired from balanced reduction). optimization of the LFT state matrices. As mentioned earlie

So the solution focused here to get a lower-sized LFT is toF T models are well-adapted to full flight domain aircraft
simplify the interpolation formula, by sorting the polyni@h control design. So these flexible LFT models are to be used in
terms and using only the most relevant ones through the framework of research on the promising multiobjective
correlation analysis between the latter variations angehoflexible aircraft control [7], [8], extended to the full fligh
of the coefficients to be interpolated. domain case.

The A-block dimension decreases about linearly with
respect to the number of polynomial terms used for inter-
polation (see Fig. 9); In the case of an exact interpolatioft!
the error minimization algorithm (see II-E) is useless, but

o Normalized parameter values

o
Tos Normalized parameter values

10 10
Frequency (H2) Frequency (Hz)

15 08

Fig. 8. frequency response continuum with respect to OT &hd
parameters. Solid lines : reference models frequency rsgso
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