
HAL Id: hal-01060318
https://onera.hal.science/hal-01060318

Submitted on 3 Sep 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Method for Flexible Aircraft LFT Modelling
J. Torralba, F. Demourant, G. Puyrou, G. Ferreres

To cite this version:
J. Torralba, F. Demourant, G. Puyrou, G. Ferreres. A Method for Flexible Aircraft LFT Modelling.
European Control Conference, Aug 2009, BUDAPEST, Hungary. �hal-01060318�

https://onera.hal.science/hal-01060318
https://hal.archives-ouvertes.fr


A Method for Flexible Aircraft LFT Modelling

J. Torralba and F. Demourant and G. Puyou and G. Ferreres

Abstract— This paper presents a method to obtain a Linear
Fractional Transformation (LFT) model from a set of numerical
flexible aircraft models. The core of the method lies in a
polynomial interpolation, but before this step, some cautious
treatments must be applied to the numerical models for them
to be interpolable. First the models have to be reduced to be
exploitable, while ensuring they all keep the same consistent
modal content and avoiding numerical problems. Second the
interpolation of the reduced models state representationscan
only be processed if the state vector has the same physical
meaning for the whole model set (state vector consistency).
For this problem, a specific state coordinate transformation
is emphasized. After models are interpolated, the LFT is
computed with the LFR toolbox’s generalized Morton method.
Then the LFT accuracy can be improved through a biconvex
optimization.

I. INTRODUCTION

The Linear Fractional Transformation (LFT, see Fig. 1)
modelling of aeroelastic (i.e. flexible) models was investi-
gated in [1], [2] and [3] for flutter analysis. These methods
are based upon the knowledge of the parametric structure
of the aeroelastic equation of motion (1) to build the
corresponding LFT with respect to flight parameters (e.g.
Mach number) and mass cases. In this equation,M , C and
K are respectively the mass, damping and stiffness of the
aircraft structure. The aerodynamic contribution involves the
dynamic pressureq and the unsteady aerodynamic forces
modelled byQ, which depends on flight parameters (Mach
number and airspeed).

Mη̈ + Cη̇ + Kη = qQη (1)

In practice, this equation is evaluated at one flight point
and one mass case and then the corresponding aeroelastic
model is reduced. If a set of models is considered, generally
the remaining modal content is not consistent from one
flight point and mass case to another, leading to models
with various number of states, and for which the parametric
dependencies information has been lost. Hence the method
that is presented in this paper, which is fully numeric as
it is assumed that the only input data is a set of models
(Gi(s))i∈[1,N ] describing the aeroelastic dynamics of the
aircraft for a set of flight parameters and mass cases. In
other words, the parametric structure is unknown a priori.
Of course this method can also be used for other types of
dynamic models for which the analytic structure is unknown.

It is worth pointing out that LFT models are deeply inter-
esting for full flight domain aircraft control design (possibly
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Fig. 1. LFT model structure

including flexible aspects). Indeed their intrinsic accounting
for model parametric variations enables to directly design
parameterized control laws (i.e. self-scheduling laws), which
removes the industrially-famous tricky step of a posteriori in-
terpolation of the laws. This way, LFT models may contribute
towards simplifying present-day control design algorithms.

The paper is outlined as follows. Section II presents the
overall algorithm: first a reduction method for a set of
aeroelastic models is introduced, for the reduced models to
be mutually consistent. An interesting state-space basis is
also emphasized for the reduced models to be interpolable.
Then an algorithm is proposed to optimize the LFT accuracy.
Finally in section III, the algorithm is illustrated with a
flexible aircraft LFT modelling example.

II. ALGORITHM FOR FLEXIBLE AIRCRAFT LFT
MODELLING

Let us consider a set of linear models of a flexible aircraft
(Gi(s))i∈[1,N ] corresponding to a set of values(δi)i∈[1,N ] of
a vectorδ gathering some significant flight and mass cases
parameters (e.g. airspeed, Mach number, external fuel tank
filling rate, ...).

We would like to compute an LFT modelFu(M(s), ∆)
that matches this set of models (from both modal and
frequential points of view), and that has sensible vari-
ations between theN points. Hence the problem is to
minimize the errormaxi∈[1,N ]‖Fu(M(s), ∆i) − Gi(s)‖∞
with respect toM(s) and to the model perturbation∆ =
diag(δ1Ii1 , ..., δNIiN

) structure.
The guideline of the algorithm is to get a set of

state representations(Ai, Bi, Ci, Di)i∈[1,N ] of the models
(Gi(s))i∈[1,N ] that can be interpolated. This means that the
state space matrices coefficients must be of same nature from
one flight point to another. The algorithm then has roughly
three steps : reduce the models number of states, make
the models state representations interpolable, and interpolate
them with respect to vectorδ parameters, right before the
LFT realization. These steps are explained hereafter.



A. Model reduction

The reduction step is necessary to get exploitable models
as flexible aircraft models generally have a lot of states, say
300 states. This reduction step is already a difficult task since
the reduced models must be interpolable. So the reduction is
required to provide models with the same number of modes,
that must also be of same nature. There is no real formalism
to declare that two modes for two different flight points are
of same nature, this mainly relies on the physical sense of
the engineer. But it can be said that a same mode varies
with respect to the flight point and the mass case inside a
restricted area of the complex plane (see Fig. 2(a)).
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Fig. 2. Consistent modes selection strategy

The well-known and efficient balanced reduction appears
to difficult to use in this framework, because for each
model the modes are modified according to observability and
controlability properties, which destroys the overall modal
consistency for the whole set of models.

Modal truncation is interesting because it avoids the prob-
lem of modal content alteration, but it cannot be directly
used due to numerical problems linked with the complexity
of the models. Finally, the best solution is to handle directly
the modes of the models; the problem is hence to select a
limited number of interesting modes, while ensuring that the
N sets of modes gather the same number of modes that are
of same nature.

The first step for modes selection is to chose a refer-
ence model, say the one in the middle of the parametric
domain (i.e. model numberiref ). For this model, only
the nx modes inside the chosen bandwidthfmax are kept
(eigenvaluesλ such that|λ| ≤ 2πfmax); then it comes
to find the closest flight pointicl to the reference one
(icl = argmini∈[1,N ](‖δ

iref − δi‖2)), for the modes to
be as close as possible to their locations at flight point
iref (the closest mode for model numbericl to a particular
modeλ

iref

kref
corresponding toiref is λicl

kcl
such thatkcl =

argmink∈[1,nxcl
](|λ

iref

kref
− λicl

k |)). So for icl, the nx chosen
modes are the closest ones to those corresponding toiref

(see Fig. 2(b)). After flight pointicl is treated, the latter
becomes the reference one and so on until theN models are
handled.

At this stage, having computed the N sets of modes, the N
matrices(Ai)i∈[1,N ] can be determined using a modal state
representation :

Amod
i =















ℜ(λi
1) ℑ(λi

1) 0 0
−ℑ(λi

1) ℜ(λi
1) 0 0

0
. . .

. . . 0
0 0 ℜ(λi

nx
) ℑ(λi

nx
)

0 0 −ℑ(λi
nx

) ℜ(λi
nx

)















(2)

Then it remains to find(Bi, Ci, Di)i∈[1,N ] matrices, by
approximating the initial models(Gi(s))i∈[1,N ] frequency
responses. This problem turns out to be a biconvex mini-
mization of the Input/Output (I/O) frequential error, which
is noted∆Fi(jω) = (Ci(jωI − Ai)

−1Bi + Di − Gi(jω)).
This quantity is used to define a frequential criterion that
is expressed in two different manners: the first one (3)
enables to minimize the error with respect to both(Bi)i∈[1,N ]

and (Di)i∈[1,N ], and the second one to(Ci)i∈[1,N ] and
(Di)i∈[1,N ] (4).

J∆F∗∆F = · · ·
∑

i

∑

j

trace (∆F ∗
i (jωj) ∆Fi(jωj)) (ωj+1 − ωj) (3)

J∆F∆F∗ = · · ·
∑

i

∑

j

trace (∆Fi(jωj) ∆F ∗
i (jωj)) (ωj+1 − ωj) (4)

whereF ∗ denotes the conjugate transpose of matrixF .
The frequential error minimization algorithm will thor-

oughly be presented in section II-E.
This reduction method is attractive for two reasons. Firstly

the modes are directly handled, which is convenient to
sort them considering the whole set of models; secondly
the biconvex optimization efficiently refines the frequency
responses of the reduced models with respect to the reference
models.

B. Coordinate transformation for state vector consistency

At this stage, theN models are reduced, they have the
same number of modes which are of same nature.

Now before interpolating the state space matrices, it is
necessary to find a state basis ensuring these matrices are
consistent in terms of states whatever flight point indexi.

More precisely, after interpolation of the state matrices
is done, the result must be regular modal trajectories as
well as frequential responses variations with respect to flight
parameters vectorδ (see Fig. 3). This is an efficient test for
state vector consistency.

Our research showed that the characteristic polynomial
of the models (5) is of deep interest as regards the modal
trajectories regularity constraint. This phenomenon can be
explained by the physical nature of this polynomial’s coeffi-
cients (6) that are directly linked with the model frequency



Fig. 3. A strong constraint : modal trajectories regularity

responses, and even more directly with the physical differ-
ential equations of the flexible aircraft.

d(s) = det(sI − A) (5)

d(s) = snx + cnx−1s
nx−1 + · · · + c1s + c0 (6)

The state basis linked with the characteristic polynomial
is the companion basis, in which theA matrix has the form
:

Acomp
i =

















0 1 0 · · · 0

0 0
. ..

. . .
...

...
... · · · 1 0

0 0 · · · 0 1
−ci

0 −ci
1 · · · · · · −ci

nx−1

















(7)

This companion state basis is known to provide badly-
conditioned state matrices. So it is necessary to regularize
Acomp

i matrices through a scaling matrixT to balance the
coefficients values, while keeping the same eigenvalues of
course [4]. The same scaling is applied to all models (i.e.
∀i) for consistency. A regularized companion matrixAcompr

i

is then obtained (8).

Acompr
i = T−1Acomp

i T (8)

The scaling matrixT is computed forAcompr
i matrix to

have the same rows and columns norms, as much as possible.
More precisely,T is a diagonal matrix gathering integer
powers of two on its diagonal, to avoid roundoff errors (9).

T = diag(2k1 , ..., 2knx ) (9)

in which (kp)p∈[1,nx] are the aforementioned integers, inde-
pendent ofi index (flight point index).

The final regularized companion matrixAcompr
i is then :

Acompr
i =











0 2k2−k1 0 0

0 0
. . .

...
0 0 · · · 2knx−knx−1

−cri
0 −cri

1 · · · −cri
nx−1











(10)

wherecr are the regularized characteristic polynomial coef-
ficients.

Now the state space matrices corresponding to this reg-
ularized companion form (10) must be computed, knowing
them in the modal basis (2).

The frequency response with respect to modal state ma-
trices can be written :

Gi(s) = Cmod
i (sI − Amod

i )−1Bmod
i + Di, (11)

and with respect to regularized companion state matrices :

Gi(s) = Ccompr
i (sI − Acompr

i )−1Bcompr
i + Di. (12)

The matrixAcompr can readily be expressed in the modal
basis (13), in three steps : firstAcompr is diagonalized,
then the modes of the obtainedA matrix are reordered with
respect toAmod, and finally complex modes are split into
real and imaginary parts, like in (2).

Acompr
i = PiA

mod
i P−1

i (13)

From (12) and (13) we have :

Gi(s) = Ccompr
i Pi(sI − Amod

i )−1P−1
i Bcompr

i + Di. (14)

And finally the companion state matricesBcompr
i and

Ccompr
i are deduced from (11) and (14) (Acompr

i and Di

are already known) :

Bcompr
i = PiB

mod
i

Ccompr
i = Cmod

i P−1
i (15)

In this regularized companion basis, experiment shows
that the state matrices(Ai, Bi, Ci, Di)i∈[1,N ] can be directly
interpolated with respect toδ parameters, because of the
modal trajectories regularity that is observed, meaning the
state vector is consistent from one flight point to another.

C. Models interpolation and LFT modelling

1) Interpolation: The state space matrices are interpolated
in their regularized companion form, through a multivariate
polynomial structure. This problem can be easily solved with
a least squares algorithm.

2) LFT realization: Once the interpolation structure is
known, the LFT is simply realized with the generalized
Morton’s method [5] that is implanted in the LFR toolbox
(function gmorton.m [6]). This method is the generaliza-
tion of Morton’s method to a polynomial expansion, and it
lies on a singular values decomposition of each matricial
coefficient.

D. Validation of the LFT

In order to assess the LFT accuracy, three criteria are
defined : one evaluates the LFT modal matching with the
reference models (16), and the other two areH∞ (17) and
H2 (18) frequential criteria for the frequential matching
assessment.



ǫmodal = max
i∈[1,N ]









nx
∑

k=1

|λi
k − λref,i

k |

nx
∑

k=1

|λref,i
k |









(16)

whereλi
k is the LFT’s k-th mode at flight point numberi and

λref,i
k refers to the corresponding reference modelGi(s).

ǫH∞
= max

i∈[1,N ]

(

σ̄(∆Fi(jω)

σ̄(Gi(jω))

)

(17)

in which ∆Fi(jω) = (Fu(M(jω), ∆i) − Gi(jω)) and σ̄
is the maximum singular singular value on the pulsation
continuum (H∞ norm).

ǫH2
= · · ·

max
i∈[1,N ]





√

1

2π

∑

j trace (∆F ∗
i (jωj) ∆Fi(jωj)) ∆ωj

trace (G∗
i (jωj)Gi(jωj))





(18)

where∆ωj = (ωj+1 − ωj).
In depth validation is of course necessary to check both

modal and frequential behaviours of the LFT on the whole
model continuum. This step will be illustrated in the applica-
tive example.

E. Input/Output error minimization

If the I/O error is not satisfactory, it can be minimized
with a biconvex optimization. This algorithm is an extension
to the LFT case of the one previously mentioned in paragraph
II-A. In this situation, the minimized criterion (see (3) and
(4)) depends on the frequential error between the LFT and
the reference models :

∆Fi(jω) = (Fu(M(jω), ∆i) − Gi(jω))

Let us recall the state representation of an LFT :






ẋ = Ax + B1w + B2u
z = C1x + D11w + D12u
y = C2x + D21w + D22u

(19)

The LFT frequency response is then (the model indexi is
dropped for simplicity) :

Fu(M(jω), ∆) = C(∆)Y (jω, ∆)B(∆) + D(∆)

with Y (jω, ∆) = (jωI −A(∆))−1, A(∆) = A+B1X∆C1,
B(∆) = B2+B1X∆D12, C(∆) = C2+D21X∆C1, D(∆) =
D22 + D21X∆D12, andX∆ = ∆(I − D11∆)−1.

Hence the two expressions of the frequential error :

∆F (jω) = HBD





B2

D12

D22



 − G(jω)

=
(

C2 D21 D22

)

HCD − G(jω)

with HT
BD(jω) =





Y T (jω, ∆)CT (∆)
XT

∆

[

BT
1 Y T (jω, ∆)CT (∆) + DT

21

]

I





andHCD(jω) =





Y (jω, ∆)B(∆)
X∆ [C1Y (jω, ∆)B(∆) + D12]

I



.

If the first set of variables of the biconvex optimization is
written as :





B2

D12

D22



 =
(

β1 . . . βm

)

where(βk)k∈[1,m] are column vectors to be found, we shall
then have :

trace(∆F ∗(jω)∆F (jω)) = · · ·
m

∑

k=1

(βT
k Qβk − 2ℜ(lTk (jω))βk) + trace(G∗(jω)G(jω))

with Q = H∗
BD(jω)HBD(jω), G∗(jω)HBD(jω) =







lT1 (jω)
...

lTm(jω)






and (lk)k∈[1,m] are column vectors.

Likewise, with the second set of variables as :

(

C2 D21 D22

)

=







γT
1
...

γT
p







we get :

trace(∆F (jω)∆F ∗(jω)) = · · ·
p

∑

k=1

(γT
k Qγk − 2γkℜ(hk(jω))) + trace(G(jω)G∗(jω))

with Q = HCD(jω)H∗
CD(jω), HCD(jω)G∗(jω) =





hT
1 (jω)
· · ·

hT
p (jω)





T

and (hk)k∈[1,p] are column vectors.

Back with models indices i.e.i, each term of both criterion
to be minimized ((3) and (4)) has the following quadratic
structure :

trace(∆Fi(jωj)∆F ∗
i (jωj)) = · · ·

ci,j − 2θT fi,j + θT Qi,jθ

The final expression is a quadratic criterionc −
2θT f + θT Qθ, with c =

∑

i

∑

j

ci,j(ωj+1 − ωj), f =
∑

i

∑

j

fi,j(ωj+1−ωj) andQ =
∑

i

∑

j

Qi,j(ωj+1−ωj). There

exists an analytical minimum atθ = Q†f , which makes each
loop of the biconvex optimization very fast.

III. APPLICATION

This application illustrates the previously presented
method of LFT modelling from a set of numerical models
corresponding to a set of flight point and mass cases. These
models are aircraft longitudinal flexible models that are
wanted to be modelled as an LFT for control design purpose.



A. Description of the model

The set of aircraft models(Gi(s))i∈[1,N ] correspond to
variations of the parametersδ =

(

OT Ma Vc

)

, being
respectively the outer tanks filling rate, Mach number and
conventional airspeed.

These parameters vary inside the domain depicted in Fig.
4. For interpolation,N = 27 points are chosen inside this
parametric domain.
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Fig. 4. LFT model representativity parametric domain. Solid lines:
parametric domain; crosses: reference points for LFT modelling

The inputs of the model are the elevatorδq and the ailerons
in symetric modeδpsym = (δpleft + δpright) :

The outputs are critical wing loads i.e. bending load
WMX and twisting loadWMY at wing root.

B. Model reduction

The intial state space flexible models have an average of
270 states. By setting the would-be LFT representativeness
bandwidth to 8 Hz (≈ 50 rad/s), the number of states drops
to 18 i.e. 9 flexible modes (see Fig. 5).

When the 27 consistent sets of 9 modes are formed,
it remains to reconstruct theI/O responses of the initial
models with this limited number of modes, to get the reduced
models (an example of reduction result for one flight point
is given in Fig. 5 and 6).
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C. LFT construction

The LFT is then built according to the method presented
in II-B, II-C and II-C.2. The polynomial terms used for
interpolation are computed by expanding the polynomial
(1 + ŌT )2(1 + M̄a)2(1 + V̄c)

2. The obtained LFT has the
following ∆-block :
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Fig. 6. Frequential comparison of initial (.-) and reduced models (-)

∆ = diag(ŌT × I40, M̄a× I30, V̄c × I40)

dim(∆) = 110

D. Validation of the LFT

The values of the validation criteria (16), (17) and (18)
for our example are gathered in table I.

TABLE I

LFT VALIDATION

ǫmodal (%) ǫH∞
(%) ǫH2

(%)
1.12 × 10−8 3.83× 10−7 1.94 × 10−7

There is almost a perfect match between the LFT and the
set of reference models(Gi(s))i∈[1,27].

E. Regularity check-up

Since an LFT is a continuum of models, the previously
built LFT has also to be checked-up between the flight points
used to design it. It must be proven that the continuum of
modes (i.e. modal trajectories when̄δ varies) and the fre-
quency response continuum are both regular. No ”overshoot”
must be observed, and ideally the continuum should vary
linearly between two reference flight points.

In our application, the principal directions of the paramet-
ric domain are explored to assess the regularity propertiesof
the LFT.

The modal trajectories (see Fig. 7) show that the LFT
has no unexepected behaviour (i.e. no irregularities) in terms
of modes. Besides, this proves the interest of characteristic
polynomial coefficients for the state vector consistency ina
set of models.

The frequency response continuum (Fig. 8) is fully satis-
factory as well.

These tests are not thorough but the good properties of the
LFT along the domain’s principal directions, together with
its matching the reference models, are good indicators of its
validity on the whole continuum.

F. Effect of error minimization algorithm

Now the LFT has been validated in the wake of an exact
interpolation, it can be interesting to attempt to decrease
its complexity. There exists two ways to simplify the LFT
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complexity : one consists in reducing the LFT a posteriori
i.e. after the interpolation and the LFT realization (using
gmorton.m), the second one is an a priori approach. It
is the latter that will be detailed because it is more likely to
reduce the LFT complexity, as the former (i.e. a posteriori
reduction) is already included ingmorton.m (see LFR
toolbox’s functionminlfr.m dealing with LFT complexity
reduction inspired from balanced reduction).

So the solution focused here to get a lower-sized LFT is to
simplify the interpolation formula, by sorting the polynomial
terms and using only the most relevant ones through a
correlation analysis between the latter variations and those
of the coefficients to be interpolated.

The ∆-block dimension decreases about linearly with
respect to the number of polynomial terms used for inter-
polation (see Fig. 9); In the case of an exact interpolation,
the error minimization algorithm (see II-E) is useless, but
it becomes necessary in the approximation case. Indeed,
as shown in Fig. 9, the algorithm dramatically reduces the
frequential error; for example with 18 polynomial terms,
the ∆-block dimension reduction with respect to the exact
interpolation case is30%, and the effect of the frequential
error minimization is a50% accuracy gain with respect to
the rough interpolation result.

This LFT reduction algorithm has been used for multiob-
jective flight control law design in order to use both a relevant
and a reasonably-sized LFT model for a robust design. Our
LFT reduction algorithm based on polynomial terms sorting
enabled a50% drop of the design LFT size, and though a
30% loss of accuracy, final results showed the performance
obtained with the analysis model was really close to those
foreseen with this reduced design LFT model.

Fig. 9. Evolution of frequential error and∆-block dimension with respect
to the polynomial interpolation complexity

IV. CONCLUSION

The method presented in this paper proposes to design an
LFT from a set of aeroelastic models. It is definitely adapted
to complex and prominently numerical models, with no
parametric structure knowledge whatsoever. The solution had
then to involve as simple algorithms as possible to balance
the data complexity. Naturally the least squares algorithmis
used to interpolate the models with a basis of polynomials.
Before interpolation, two steps are fateful in the process :the
consistent reduction of the models and their state representa-
tions transformation in a regularized companion state basis.
This way, the reduced models are made interpolable. After
the LFT is realized through the generalized Morton’s method,
its I/O accuracy can be optimized with an efficient biconvex
optimization of the LFT state matrices. As mentioned earlier,
LFT models are well-adapted to full flight domain aircraft
control design. So these flexible LFT models are to be used in
the framework of research on the promising multiobjective
flexible aircraft control [7], [8], extended to the full flight
domain case.
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