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ABSTRACT

Far-field decomposition methods are among the most powerful means to accurately compute the 
forces on an aircraft. They allow distinguishing between the drag components associated with the 
various physical phenomena: shock waves, viscous interactions and lift-induced vortex, without yet 
being fit to apply to unsteady configurations. Van der Vooren and Destarac have for example 
developed a powerful and reliable method used widely in the industry but restricted to steady flows. 
This paper presents a generalization to unsteady flows of this formulation. The demonstration relies on 
a strong theoretical background and allows the breakdown of drag into the three usual components 
only. This new unsteady formulation is applied to an OAT15A profile with buffeting, then to a 
NACA0012 profile at high angle of attack with natural vortex shedding. The results are analyzed and 
compared to the only other formulation available to break down the drag of unsteady flows. 
 

1. INTRODUCTION 

Recent drastic environmental and economic 
requirements such as ACARE in Europe lead the 
aeronautics actors to try to reduce as much as 
possible the aircraft consumption, and therefore 
the drag. Even a slight improvement on the drag 
can noticeably reduce the fuel consumption and 
the impact on the environment. In order to achieve 
these ambitious objectives, several ways can be 
chosen, such as aerodynamic optimization, 
control, or exploration of innovative designs. 
Among those designs, many involve complex 
unsteady phenomena, such as counter-rotating 
open rotors (CROR). In order to correctly quantify 
the gain of such breakthrough configurations, the 
drag must therefore be accurately computed for 
unsteady compressible flows. 

Far-field drag computation was first 
introduced by Betz [1]. Instead of computing the 
forces on a body by integrating aerodynamic 
stresses on the skin (near-field methods), one can 
equivalently analyze the aerodynamic phenomena 
which occur within the fluid surrounding the body. 
This analysis is richer and allows distinguishing 
between the drag components associated with the 
various physical phenomena: shock waves, 
viscous interactions in the boundary layer and in 
the wake, and lift-induced vorticity. It can also 
identify a part of the spurious drag due to 

numerical dissipation. Onera has been working on 
far-field drag analysis for over a decade and has 
developed a reliable method for steady flows 
based on Van der Vooren’s formulation [2]. 
However, no far-field method is for now able to 
successfully break down the drag of unsteady 
flows. Noca [3] has carried out an experimental 
study of several far-field formulations based on 
Wu equations [4]. Marongiu [5] as well as Xu [6] 
have applied similar methods to numerical 
unsteady flows, but like Noca, without achieving a 
physical breakdown. Gariépy [7] has also made a 
first attempt in generalizing Van der Vooren, but 
his decomposition still holds terms that cannot be 
matched with physical phenomena. 

This paper presents a generalization of Van 
der Vooren’s formulation to unsteady flows. It 
results in only viscous, wave, induced and 
spurious unsteady drag, and is valid for both 
URANS and DES simulations. This new unsteady 
formulation is analyzed and compared to 
Gariépy’s formulation. Since Gariépy [8] uses 
Méheut’s definition of an axial velocity defect [9], 
both expressions are first tested on steady cases 
to assess the reliability and accuracy of both 
approaches. The unsteady formulations are then 
applied to URANS computations: an OAT15A 
profile with buffeting, and a NACA0012 profile at 
high angle of attack with natural vortex shedding. 
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2. THEORY 

The general equations which lead to the far-
field breakdown of drag will be presented in this 
section. The steady formulation as introduced by 
Van der Vooren and Destarac [2] will first be 
redemonstrated in order to better understand the 
hypotheses which were made. The formulation 
will then be generalized to unsteady flows, before 
being compared to Gariépy’s formulation. 

 
2.1. General equations 

The far-field theory consists in computing the 
aerodynamic force from the flow field analysis 
instead of the integration of the local stress on the 
body. The balance between the two approaches 
relies on the conservation of fluid momentum as 
described in Eq. 1. It requires no further 
assumption and is therefore valid for all unsteady 
compressible flows. 

�
��(� − �∞)

���
d� = − � �(� − �∞)(�. �)

��
d� 

− � (� − �∞)�
��

d� + � (�. �)
��

d� 
(1) 

The drag is obtained by taking the component 
along x and splitting the frontier of the domain �� 

into the body surface �� and the outer surface �� 
so as to get the near-field drag and the far-field 
drag on either side of the equation. The far-field 
drag can therefore be written as in Eq. 2, with 
� = −�(� − �∞)� − (� − �∞)� + ��. 

��� = � (�. �)
��

d� − � �(� − �∞)(�. �)
��

d� 

− �
��(� − �∞)

���
d� 

(2) 

The first surface term represents the flux of 
the physical sources of drag through the outer 
surface. The second surface term is due to the 
prospective motion of the body and will be zero in 
all the applications of this paper, and will therefore 
be dropped in the following equations. The 
volume term accounts for the time dependence as 
well as the propagation in time of the momentum. 

 
2.2. Van der Vooren’s formulation (steady) 

For steady flows, the expression of the far-
field drag reduces to the first surface integral in 
Eq. 2. Van der Vooren and Destarac’s formulation 
consists in breaking down the expression of � into 
an irreversible and a reversible part. 

They assume that a flow submitted to only 
irreversible processes is such that the pressure is 
equal to the reference pressure and the velocity 

parallel to the upstream velocity on a wake plane 
�� sufficiently far from the drag sources. 

This leads to the following decomposition, 
denoting ���� the axial velocity on �� under these 
assumptions: 

���� = −�(���� − �∞)� + �� (3) 

The complementary is the reversible part: 

���� = −�(� − ����)� − (� − �∞)� (4) 

We can then define the profile and induced 
drags as: 

��� = � (����. �)
��

d� (5) 

�� = � (����. �)
��

d� (6) 

The computation of ���� given in Eq. 7 comes 
from thermodynamical considerations and the 
application of the irreversibility hypothesis. 

���� = �∞�1 +
2Δ�
�∞

2 −
2

(� − 1)�∞
2 ��

Δ�
�� − 1� (7) 

This definition holds only if �� ≤ �∞ as Méheut 

pointed out in his paper [9]. ���� can therefore be 
undefined in regions where the flow is detached, 
where the vortices are strong, in the boundary 
layers if � > �∞ and downstream of strong 
shocks. However, the integration surfaces can be 
chosen around those regions, resulting in only 
quite small discrepancies. 

 
Figure 1. Volumes and surfaces  

used for the integrations 

The profile drag can be further broken down 
into a wave and a viscous drag through a volume 
partition (see Fig. 1): 

�� = � (����. �)
���

d� (8) 

�� = � (����. �)
���

d� 
(9) 
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Since the flow is isentropic and steady 
downstream of the shock, the integration surface 
for the wave drag coefficient can be moved 
upstream and placed a little downstream of the 
shock. 

The last step is to turn the wake integrals into 
closed surface integrals using the divergence 
theorem, in order to get a better numerical 
reliability. The spurious drag is then the difference 
between the near-field drag and the far-field drag. 
Eq. 10 summarizes the steady formulation. 

�� = � (����. �)
��

d� 

�� = � (����. �)
��

d� 

�� = � (����. �)
��

d� 

��� = �� + �� + �� 

��� = ��� − ���  

(10) 

Note that a one vector formulation can be 
defined using the fact that �. � = 0 everywhere. 

 
2.3. Drag decomposition for unsteady flows 

The extension to unsteady flows of the 
previous formulation is not as straightforward as it 
could seem. The approach presented here 
consists in computing the contribution of each 
isolated profile drag source. 

 
2.3.1. Unsteady wave drag 

Let us first consider an unsteady isolated 
shock wave. The drag created by this wave can 
be defined as the stress on the lateral surface of a 
streamtube enclosing the shock (see Fig. 1). The 
balance of momentum in this streamtube, 
neglecting the part upstream of the shock, gives 
the expression of the unsteady wave drag: 

�� = � −�(���� − �∞)(�. �)
���

d� 

− �
��(� − �∞)

��V�+���

d� 
(11) 

We can see that the whole flow information 
downstream of the shock is required in order to 
take into account the delay and the propagation of 
the source of drag. The wake surface integral can 
here also be moved closer upstream to the shock 
wave. However, because of the unsteadiness of 
the flow, new terms arise from this transformation.  

Eq. 12 is the result of several manipulations 
using the divergence theorem. 

 

 

�� = � −�(���� − �∞)(�. �)
��

d� 

− �
��(� − �∞)

����

d� 

− � �
��(� − ����)

��
+

1

����

��
��

�
���

d� 

(12) 

 
The point of this manipulation is that the last 

volume integral is small compared to the others 
(around 5% of the wave drag), so that the 
numerical errors are reduced. 

 
2.3.2. Unsteady viscous drag 

We now consider an isolated profile in an 
unsteady flow, without shock waves. We are still 
working in a streamtube around the profile, 
neglecting the upstream part. The time derivative 
term also adds to the steady one: 

�� = � (−�(���� − �∞)� + ��). �
��

d� 

− �
��(� − �∞)

����

d� 
(13) 

One could also do a similar manipulation as in 
the shock wave case to integrate closer to the 
profile but it was not judged necessary here since 
the wake volume integral would remain large. 

 
2.3.3. Unsteady induced drag 

The induced drag is the complementary part 
of the total drag: 

�� = � (−�(� − ����)� − (� − �∞)�). �
��

d� 

+ � −�(���� − �∞)(�. �)
��\(���+���)

d� 

− �
��(� − �∞)

���\(��+���+��)

d� 

(14) 

Let us call �� = �\(�� + ��� + ��). The 
second wake surface integral can be moved 
similarly to the shock wave case, giving the same 
terms in the volume ��: 

�� = � (−�(� − ����)� − (� − �∞)�). �
��

d� 

− � �
��(� − ����)

��
+

1

����

��
��

�
��

d� 
(15) 

If the fluid is inviscid without any shock, then 
�� becomes the whole volume and therefore the 
induced drag gives the total drag as expected. 
This expression is however not completely 
satisfactory because the volume term can contain 
irreversible phenomena such as viscous terms 
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which propagated in the fluid domain. A validation 
in Euler, RANS, 2D and 3D test cases is required 
before applying it to complex cases. 

 
2.3.4. Final decomposition 

The final decomposition is given in Eq. 16: 

�� = � (����. �)
��

d� − �
��(� − �∞)

����

d� 

− � �
��(� − ����)

��
+

1

����

��
��

�
���

d� 

�� = � (����. �)
��

d� − �
��(� − �∞)

����

d� 

�� = � (����. �)
��

d� 

− � �
��(� − ����)

��
+

1

����

��
��

�
��

d� 

��� = �� + �� + �� 

��� = ��� − ���  

(16) 

Some remarks can be made at this point: 
 The steady formulation is retrieved when 

the time-derivative terms are removed. 
 The zones where ���� is undefined are 

usually concentrated in �� and �� so that it can be 
used in most cases. However another 
decomposition of the axial velocity developed by 
Méheut [9] is available for more complex cases 
(see section 2.4.1.). 

 
2.4. Gariépy decomposition 

Let us now compare our formulation with that 
of Gariépy [7]. His formulation is the first attempt 
in breaking down the unsteady drag. He uses the 
definition of the axial velocity defect first 
introduced by Méheut [9]. 

 
2.4.1. A new expression for the axial velocity 

Méheut [9] tackles the decomposition of the 
axial velocity the other way around: he assumes 
that the flow is reversible (entropy and enthalpy 
are constant) on a wake plane ��

′ . It gives a 
reversible velocity: 

���� = �∞

⎷
⃓⃓
⃓⃓
⃓⃓
⃓⃓
�⃓

1 −
2

(� − 1)�∞
2 ��

�
�∞

�
�−1

�
− 1�

−
�2 + �2

�∞
2

 (17) 

Remember that we needed to move the wake 
integration surface upstream to compute the wave 
drag, using the isentropy of the flow. Now the 
velocity that we want to move is � − ����. It 
depends only on Δ� and Δ� in a first 

approximation. It is therefore expected that the 
closer we integrate from the source of drag, the 
less reliable this expression is. 

Gariépy also assesses in his paper [8] that Δ� 

should be added to the expression of ���� when 
computing the profile drag. The superscript * will 
be added to the corresponding expressions: 

����
∗ = �∞

⎷
⃓⃓
⃓⃓
⃓⃓
⃓⃓
�⃓

1 −
2

(� − 1)�∞
2 ��

�
�∞

�
�−1

�
− 1�

−
�2 + �2

�∞
2 +

2Δ�
�∞

2

 (18) 

It is equivalent to removing Δ� from ����. If it 
is of small consequences in steady cases (a few 
drag counts at most), the effect is much stronger 
for unsteady cases since the enthalpy varies 
strongly in time. Our opinion is that the enthalpy 
due to the unsteadiness of a shock should appear 
inside the wave drag. Same goes for the viscous 
drag. 

A study in steady flow case will be carried out 
in section 3.1. to confirm these allegations. 

 
2.4.2. Gariépy unsteady decomposition 

Gariépy [7] introduces the former expression 
of the axial velocity defect within the steady 
decomposition. He suggests including the time-
derivative terms into an unsteady drag coefficient. 
He also defines a spurious drag from the 
integration of terms he judges small outside the 
zones of production of drag. His formulation can 
be written as follows: 

��
� = � (����

∗ . �)
��

d� 

��
� = � (����

∗ . �)
��

d� 

��
� = � (����. �)

��

d� 

����
� = � (����

∗ − ����). �
��

d� 

− �
��(� − �∞)

���
d� 

���
� = � (�. ����

∗ )
���+��

d� 

���
� = ��

� + ��
� + ��

� + ����
� + ���

�  

(19) 

Here are some remarks about this 
formulation: 

 Gariépy deliberately chose to assign all 
unsteady phenomena to an unsteady drag 
coefficient. 

 The use of the axial velocity ����
∗  is 

questionable as noted in 2.4.1. 
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 The wave drag coefficient does not take 
into account the wake of the shock and therefore 
the delay and propagation of the variations in 
time. One can expect that a variation of the 
extension of the integration surface downstream 
of the shock will lead to strong variations in this 
drag coefficient. 

 Gariépy assets in his paper that �. ����
∗  is 

located only in the regions of production of drag 
(shocks, boundary layers and wakes). However 
the irreversible terms can propagate in the rest of 
the domain, so that the spurious drag thus defined 
can be very strong. The calculations performed in 
this study have confirmed this observation. 

Both unsteady formulations have been 
implemented and are compared in section 3. 

 
3. APPLICATIONS 

The formulations are first applied to steady 
test cases. They are then tested on two unsteady 
configurations which allow drawing some 
conclusions about the validity of the approach. 
The Onera code elsA is used for every 
computation. Jameson numerical scheme is used 
and the turbulence model chosen is Spalart-
Allmaras except for the last unsteady case. The 
unsteady computations are URANS calculations. 

 
3.1. Comparative study on steady flows 

The different expressions available for the 
computation of the axial velocity defect have been 
compared in many steady cases, Euler, RANS, 
2D and 3D, with or without angle of attack. The 
downstream extension of the integration surfaces 
varies during the study. The aim is to check the 
validity of the use of ���� and ����

∗  compared to 
���� as we change the integration domain. All 
cases gave the same conclusions, which we can 
summarize with a general case of a 3D wing in a 
transonic flow with a non zero angle of attack. 

 
Figure 2. Visualization of the mesh  

of the rectangular NACA0012-based wing 

The wing is a rectangular NACA0012-based 
wing. The mesh is around 1 million nodes and is 
shown in Fig. 2. The aerodynamic conditions are: 

�∞ = 0.8, � = 2.5° and �� = 3.106. 
The convergence curves shown in Fig. 3 

show that the computation is very well converged 
after the 10,000 iterations. The variation of the 
near-field drag coefficient (in blue) in particular is 
less than a thousandth of drag count. 

 
Figure 3. Convergence curves  

of the steady 3D test case 

The flow field is presented in Fig. 4. The 
shock wave on the upper side is quite strong and 
a vortex appears at the tip of the wing. 

 

 
Figure 4. Mach contours  

and iso-surface of vorticity 

The flow field is post-processed after 10,000 
iterations by the in-house code ffd72. The first 
step of far-field drag extraction is the definition of 
the integration surfaces using volume criteria. 
Those criteria are described in [2]. The 
downstream extension of the integration surfaces 
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can vary at the demand of the user. Fig. 5 shows 
an example of the integration surfaces for a given 
downstream extension. 

 
Figure 5. Integration surfaces for the steady 3D 

test case (red = shock, green = viscous) 

Once the surfaces defined, the drag 
coefficients are computed by ffd72. The 
downstream extension of the surfaces was set to 
vary in Fig. 6, allowing a comparison between the 
three expressions of the axial velocity defect. The 
classical expression using ���� as defined by Van 
der Vooren and Destarac is quite reliable, even 
very close to the sources of drag. The 
expressions with ���� and ����

∗  give less 
satisfactory results. These observations are 
consistent with the theoretical remarks made in 
sections 2.2. and 2.4.1. Another comment is that 
there is very small difference between ���� and 
����

∗  in the steady case. It will not be the case for 
unsteady applications. 

 

 
Figure 6. Evolution of the wave, viscous and  
induced drag with respect to the downstream  

extension of the integration surfaces 

The conclusion of this first study is that the 
integration surfaces must be chosen very 
carefully. We will also try to use as much as 
possible ���� instead of ���� in the future 
applications. 

 

3.2. Buffeting 

The first unsteady test case is an OAT15A 
profile under buffeting conditions. The mesh is 2D 
with around 300,000 nodes (see Fig. 7). 

 

 
Figure 7. Visualization of the mesh  

of the OAT15A profile 

The study was carried out over one period, 

with a time step of 2.10−5, which corresponds to 
1,000 steps by period. The Mach number is 

�∞ = 0.2, � = 4.5° and �� = 13.106. The 
unsteady computation was converged over 
several periods in order to reach the full 
periodicity and avoid the transient phenomena. 
The curve of lift vs drag over one period is then 
perfectly closed. 

Fig. 8 shows the instantaneous flow field 
taken when the shock is in the downstream 
position at iteration 500. 

 

 
Figure 8. Mach contours of the buffeting case  

at iteration 500 

The integration surfaces computed by ffd72 at 
the same iteration are shown in Fig. 9. Recall that 
the integration surface for the induced drag is the 
outer surface, and �� is the complementary 
volume of the volumes shown in Fig. 9 in the 
whole control volume. 
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Figure 9. Integration surfaces for the buffeting  

case (red = shock, orange = shock wake,  
green = viscous) at iteration 500 

The drag extraction was carried out over one 
period. The resulting time evolutions are shown in 
Fig. 10. The formulation developed and described 
in this paper is in solid lines. The total far-field 
drag (pink) increases while the shock moves 
downstream and decreases while the shock 
moves upstream. It is in good agreement with the 
near-field drag. The spurious drag (orange) is 
indeed at most 20 drag counts or 2% of the total 
drag. 

 
Figure 10. Evolution of the drag coefficients  

with respect to time over one period  
of the buffeting configuration 

The validation of the other drag coefficients 
can only be qualitative by analyzing the flow field. 
The components will also be compared to those 
obtained using Gariépy’s formulation. 

The wave drag (red) takes values between 
170 and 280 drag counts. It is strongest when the 
shock is at the most downstream position, as 
expected. The viscous drag (green) varies 
between 200 and 550 drag counts. It is strongest 
when the shock is close to the leading edge and 
the flow separation is the strongest. The time 
evolution seems therefore valid. What is 
noticeable is the strong induced drag (blue) which 
oscillates between negative and positive values. 
The induced drag is zero for steady 2D 

configurations. For unsteady cases however, the 
vorticity is continuously shed in the wake, leading 
to variations in the lift and therefore in the induced 
drag, which might explain the evolution observed. 

Gariépy’s formulation results are presented in 
dashed lines, with the same colors. It was found 
that the choice of the integration surfaces, in 
particular the downstream extension of the 
viscous volume, had a very strong impact on the 
results. The downstream extension was chosen of 
3 chords in order to get the least spurious drag. 
The far-field drag is equal to the former one since 
only the decomposition is different. The wave and 
viscous drag coefficients are in phase opposition, 
so that they mismatch the physical phenomena. 
The induced drag is quite small and constant in 
time. The unsteady drag coefficient (light blue) on 
the contrary is strong with positive and negative 
values. It is remarkable that this unsteady 
coefficient is rather close to the induced 
coefficient computed with the new formulation. 
The induced drag is indeed mainly due to the 
unsteadiness. The spurious drag is rather strong, 
at most 12% of the total drag. 

The conclusion of this first test case is that the 
unsteady formulation gives good results but 
requires further validation regarding the induced 
drag expression. 

 
3.3. Vortex shedding 

The second unsteady case is the natural 
vortex shedding downstream of a NACA0012 
profile at � = 20° at low Mach number �∞ = 0.2 

and �� = 2.106. The turbulence model is here 
� − � and the numerical scheme is AUSM-P. The 
far-field drag reduces to viscous and induced 
drags, allowing a better understanding of the 
decomposition. 

 

 
Figure 11. Visualization of the mesh  

of the NACA0012 profile 
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The mesh is a 550,000 nodes 2D mesh (see 

Fig. 11). The time step is 5.10−6, which 
corresponds to 3,000 steps by period. Here again 
several periods were simulated before extracting 
the flow field and the periodic state was ensured 
looking at lift vs drag curves. 

The flow field is presented in Fig. 12. Two 
vortices are emitted periodically starting from the 
leading edge. They are then advected along the 
wake. 

 

 
Figure 12. Vorticity contours  

of the vortex shedding case at iteration 2000 

The integration volumes are computed at 
each extraction of drag. An example of the 
viscous volume is shown in Fig. 13. The induced 
surface is there again the outer surface and the 
complementary volume is the complementary of 
the viscous volume. 

 
Figure 13. Viscous integration surface  

for the vortex shedding case at iteration 2000 

The drag extraction is carried out over one 
period. The resulting time evolution curves are 
shown in Fig. 14. The far-field drag (pink) is in 
good agreement with the near-field drag (black). 
Their peaks match the instant when a pair of 
vortices is released. The high level of drag is 
consistent with the experimental results of 
Mesquita [10]. 

The results of the new formulation are 
presented in solid lines. The viscous drag (green) 
is the strongest when the separation occurs. The 
induced drag (blue) is here also non zero. 
However in this case it remains positive with 
relatively small values. Its variations are 
consistent with the variations of vorticity which is 
created at the separation instant. We could have 
expected it to vary in negative and positive values 
as in the previous test case. It is difficult to find a 
correct explanation since the wake is very wide, 
resulting in a non obvious split of the viscous and 
induced drags. The spurious drag (orange) is 
rather small, around 1% of the total drag. 

 
Figure 14. Evolution of the drag coefficients  

with respect to time over one period  
of the vortex shedding configuration 

Gariépy’s formulation is presented in dashed 
lines. The volumes were also chosen so as to get 
the least spurious drag. It is however stronger, at 
most 100 drag counts or 5% of the total drag. The 
unsteady drag term is also quite strong. The 
induced drag is almost zero and negative and the 
viscous drag is under estimated compared to the 
other formulation. 

This second test case therefore confirms the 
first one: the new formulation gives satisfactory 
drag coefficient evolutions even though the 
induced drag coefficient requires further 
investigations. 

 
4. CONCLUSION 

Van der Vooren’s far-field drag breakdown 
method has been extended to unsteady flows. 
The new formulation includes unsteady terms into 
each drag coefficient rather than gathering them 
in an unsteady drag coefficient. Since Van der 
Vooren’s definition of the axial velocity defect is 
not always defined, a new expression introduced 
by Méheut and used by Gariépy is described and 
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compared in various steady configurations. The 
results show that it is not as reliable as Van der 
Vooren’s definition and should be used with 
caution. 

A theoretical analysis of Gariépy’s formulation 
also reveals weaknesses that we have tried to 
revise. Both unsteady formulations were tested on 
two URANS configurations: a 2D buffeting case 
and a 2D vortex shedding case. The applications 
confirm what the theoretical analysis had 
predicted: although we still lack understanding for 
the induced drag, the suggested decomposition 
gives good results. We get little spurious drag and 
modifications in the integration domains do not 
alter or put the coefficients out of phase, unlike 
Gariépy’s. 

Further work will deal with validating the 
breakdown between viscous and induced drags. 
Oscillating profiles and wings, in Euler or RANS 
computations will be carried out. More complex 
URANS and DES test cases will then be 
considered, such as buffeting or spoilers. A 
CROR test case should be the following 
application, aiming to the quantification of the true 
efficiency of such breakthrough engines. Vorticity-
based formulations will also be investigated, since 
they are likely better suited to unsteady flows. 
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