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This paper considers the problem of reaction-wheel attitude control inside the mission mode of the Myriade
satellites. A structured adaptive algorithm, allowing to extend the operating domain of a static proportional-
derivative controller is presented and conditions for designing a stabilizing, continuous-time adaptive law are
given. In view of implementation, a discrete-time adaptive algorithm is derived and tested on a benchmark of
the DEMETER satellite, which was part of the Myriade program. Simulation results show that the structured
adaptation and the use of the� -modi�cation allow the adaptive closed-loop to follow attitude step references of
up to 20 degrees without saturating the reaction wheels. This allows the adaptive law to cover the whole mission
mode and replace the currently-implemented switched-based control strategy, thus potentially simplifying the
veri�cation and validation. process.

I. Introduction

The Centre National dEtudes Spatiales (CNES) Myriade series is a concept of modular microsatellites weighing
less than 200 kg that afford quick, low-cost access to space. The aim of Myriade is to bring space research within
easier reach of the scienti�c community, particularly for scientists working on large-scale international missions and
facing long lead times between the planning and implementation stages. DEMETER (detection of electromagnetic
emissions transmitted from earthquake regions),1,2 the �rst microsatellite of the Myriade series, was launched in 2004
and was taken off service in 2011. Its complete model of DEMETER is now open for the scienti�c community3 and
will be used in this paper as a benchmark. Two other missions, Parasol and Picard are still orbiting and the two next
one Taranis and Microscope will be launched respectively in 2015 and 2016. The evolutions of the Myriade series
was intend to enhance the payload capability. The �ight domain has been rede�ned in order to cope with the probable
missions over this period: Earth observation and monitoring, sun and space observation (from Low Earth Orbit (LEO)),
defense program. These led to specify a range of 500 - 800 km altitude, Sun Synchronous Orbit (SSO) orbits for all
Local Time at Ascending Node (LTAN). The speci�ed in orbit lifetime is 5 years, with extended quali�cation to 7
years when possible.

The on-orbit life of the Myriade satellites is decomposed, as for all satellites in general, into phases, allowing the
convergence from the separation state to the mission state, the orbit control, and the safe state in case of fault. For
each phase or mode, a speci�c set of attitude pointing requirements is to be met by using a speci�c set of actuators
and sensors. These requirements de�ne the associated Attitude Control mode. Inside a mode, several attitude control
and estimation algorithms can be designed, in order to meet increasing performance levels requirements. Over the
past thirty years, the number of Attitude and Orbit Control System (AOCS) modes has been reduced, so that generic
architectures now typically consist of three modes (safehold, mission and orbit control mode). In the same time the
software complexity has increased to meet ever more demanding requirements. Thus, the switching between different
AOCS modes requires exhaustive veri�cation and validation in order to demonstrate the robustness of the system with
stringent kinematics conditions and switching of attitude control sensors.
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In this paper, the problem of attitude control inside the mission mode of the Myriade satellites is considered. Due to
the limitations of the reaction wheels used for actuation, the use of a single LTI controller over the whole �ight domain
covered in the mission mode would not be adequate: the controller would either demand huge actuator solicitation at
large pointing errors or generate a very slow closed-loop response. Therefore, the desired closed loop behaviour can
only be obtained with a varying controller : when the pointing error is large the controller has to ensure a response
that is not over-demanding for the actuators, while a rapid and precise response is required when the pointing error is
smaller. The existing controller of the Myriade satellites satis�es this demand by switching between two control laws
at large pointing errors a speed tracking loop (momentum bias) is used and at small angles the controller switches to an
attitude proportional- derivative law. A satisfying response time and a limited control activity (in particular a limitation
of the reaction wheel rotation speed and a null torque for transient regimes, once the travelling speed is reached) are
thus ensured. A discontinuity in the control torque can however appear if this travelling speed has not been reached at
the switching point. The switch also induces abrupt changes in the closed-loop plant and makes the stability analysis
dif�cult. Based on these remarks, the replacement of the switched-based strategy by a direct adaptive control law is
proposed and validated by simulations.

This work was induced by previous studies dealing with the application of robust control techniques to space
activities. The suitability of such new techniques has been proven for very various space applications, including the
use and validation of robust techniques for the attitude control of Demeter with his �exible appendixes.4–6

This paper considers the direct adaptive control scheme,7,8 consisting of directly tuning the controller gains, based
solely on the measured outputs of the system. With respect to more complex estimation/gain scheduling scheme, it
has the advantage of simplicity and for this reason it is also referred to as simple adaptive control.8 As this scheme is
often based on passivity properties, it is equally called passivity-based adaptive control.9,10

The considered adaptive output feedback law writes, in the general cas,u(t) = K (t)e(t), wheree(t) = y(t)� yr (t)
is the error with respect to a reference signalyr and whereK (t) is the adaptive gain. In this paper, gain and output
structuring is considered, such thatu(t) =

P �{
i =1 K i (t)ei (t), ei (t) = yi (t) � yri (t), where each gain componentK i (t)

is adapted independently, according to a differential equation. This equation contains a gradient-type term� Gi eeT
i ,

which drives the gains to stabilizing values, according to passivity properties. The use of differentGi matrices is
inspired by Ref. 11 and is an extension of theG-passivity property introduced in Ref. 12. The choice ofei and
constraints that can be imposed onGi offer important degrees of freedom in designing the adaptive law and prove
to be particularly useful for satellite attitude control. The second term of the adaptation equation is a barrier term
� �( K i � F0i ), that keeps the gains inside a bounded domain. A term of the type� � i (K i � F0i ) (usually called
� -modi�cation8) is also considered. This term is generally used13 for persistent noise compensation as well as for
driving the adaptive gains to the ”nominal” valuesF0i , when the tracking errors become weak.

Structuring the adaptation and the use of the� -modi�cation allows, for the considered application, obtaining a
controller with an enlarged operating domain. In this way a single adaptive algorithm can be applied over the whole
mission mode of the Myriade satellites.

This paper is organized as follows. First, a section describes the Myriade attitude control problem and the DEME-
TER benchmark. Section 3 presents the method allowing to design stabilizing continuous-time structured adaptive
laws, and presents a possibility for deriving a discrete-time law, suitable for implementation on on-board computers.
The discrete adaptive law is applied in Section 4 on the DEMETER benchmark and the simulation results are given.
Finally, some concluding remarks are driven.

Notations

Rm � p is the set of realm by p matrices.AT is the transpose of the matrixA. Tr(A) is the trace ofA. 1 and0 are
respectively the identity and the zero matrices of appropriate dimensions. For symmetric matrices,A > (� )B means
thatA � B is positive (semi) de�nite. For a non symmetric matrixf AgS = A + AT . jjAjjD =

p
Tr(AT DA ) is the

weighted Frobenius norm of A with weightD > 0.
� D;� (Rm � p ! Rm � p) is a function de�ned by� D;� (K ) =  � (jjK jj2

D ) � DK , where � ([0 �� [! [0 + 1 [) is
a scalar function having the expression of a dead-zone around the origin (0 � k � � ) = 0 and that of an increasing
barrier going to in�nity ask tends to�� . An example of such a function is (� � k < �� ) = ( k � � )=(�� � k).

II. Myriade - Attitude control

This section brie�y presents the AOCS control loop of the Myriade satellites, with an emphasis on the currently
implemented switching-based controller, represented in Fig. 1. Models of the DEMETER satellite (see3 for a full full
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description of the DEMETER benchmark), which was part of the Myriade program, are used.

Figure 1. Myriade AOCS loop

II.A. Flexible satellite model

The satellite dynamics are represented by a 3 inputs - 3 outputs LTI model containing four pairs of �exible modes:3

"
J J f

J T
f 1

# "
•��
•�

#

=

"
0 0
0 � CS

# "
_��
_�

#

+

"
0 0
0 � K S

# "
��
�

#

+

"
1
0

#

TC (1)

where�� 2 R3 is the vector of angular deviations from a reference�� = � � � r around the axesx, y, z of the satellite;
� 2 R8 is the state vector associated to the �exible modes (two states per �exible mode).J andJf are respectively
the axes inertia and the coupling matrix between�� and the �exible modes, composing the generalized mass matrix.
Off-diagonal terms ofJ are in �rst approximation negligible making the three axes dynamics almost decoupled. The
matrices

Cs = diagk=1 ::: 4

 "
2� k ! k 0

0 2� k ! k

#!

; K s = diagk=1 ::: 4

 "
! 2

k 0
0 ! 2

k

#!

are diagonal generalized matrices of damping and stiffness respectively.14 Tc is the control torque applied to the
satellite.

The synthesis models are given by SISO representations of each axis (the inter-axes coupling is thus neglected at
the control design stage). The inertias are chosen equal to the nominal value and one �exible mode is considered,
de�ned by! 1 = 0 :4 � 2� rad/s and� 1 = 2 :7 � 10� 3 (the next �exible modes have less in�uence and are neglected for
the control design). For illustration, the expression of the associated transfer function for thex axis is given:

Hsat;x(s) =
0:03933s2 + 0 :0005437s + 0 :2485

s4 + 0 :01706s3 + 7 :797s2 (2)

Once the design of adaptive controllers done on these simpli�ed satellite models, the control law is tested of the
3-axes models with all four �exible modes de�ned by :

h
! 1 ! 2 ! 3 ! 4

i
=

h
0:2 0:3 0:45 0:6

i
� 2� rad/s

h
� 1 � 2 � 3 � 4

i
=

h
30 50 5 25

i
� 10� 4:

(3)

Notice that the natural frequency and damping of the �rst �exible mode is different in simulation from the one used at
the design stage. This contributes to testing robustness.
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II.B. Actuator and sensor model

The controlled torque for each axis is delivered by accelerating a reaction wheel. Its model is given in Fig. 23 :

Figure 2. Reaction wheel model

with:
HRW(s) =

1:214s + 0 :7625
s2 + 2 :40s + 0 :7625

(4)

Two saturation blocks can be observed in this model. The one on the rotation speed is critical: if the wheel reaches
the maximal speed then the generated torque is zero. The satellite becomes non-controllable, which is critical, as it is
open-loop unstable (double integrator). The wheel model used for the controller synthesis is given byHRW(s). The
control law is then tested in simulation with the complete model represented in Fig. 2.

The attitude measure is given by a star tracker, modelled in simulation by a 0.45 seconds delay and an additive
noise. For the synthesis model, this measure is considered perfect. The delay corresponding to the reaction wheel and
the star tracker could be taken into consideration for synthesis by the means of Pade approximations. This is not done
here, the synthesis model assuming zero delays. Robustness with respect to these neglected dynamics is then tested
by simulation, where all experiments are done including the delays.

II.C. Existing �ight software

The attitude control is achieved in a decentralized way, each axis being controlled independently. For each axis, the
�ight software is composed of an angular velocity estimator and a switching control law followed by a stabilizing
linear �lter.

The satellite angular velocities are estimated from the angular positions via a high pass �lter de�ned by the transfer
functionHestim(s) = s

1+0 :5s .
For each axis, the reaction wheel control system consists of a nonlinear law for large pointing errors which switches

to a proportional-derivative controller when the pointing error becomes small:
(

Tai = � k0(�! i + ! dsign(�� i)) ; if j�� i j > � L (5)

Tai = � (F0� i�� i + F0! i�! i); if j�� i j � � L (6)

where�� i is the pointing error around axisi 2 f x; y; zg.
The threshold� L and speed reference! d allow to optimize a trade-off between convergence time and control

activity. They are chosen the same for all axes. For DEMETER, the numerical values are:! d = 0 :015 deg/s and
� L = 0 :3 deg and the scalar parameterk0 = 1 . The gainsF0� i andF0! i are chosen so that the produced torque is null,
when the reference speed has been reached, and continuous at the switching point. This constraint implies:

F0� i� L = F0! i! d (7)

and the numerical values are:F0� i = F0� = 0 :1 andF0! i = F0! = 2 for all three axesi 2 f x; y; zg. This design
generally guarantees the non-saturation of the reaction wheel, that of its speed in particular.

In order to improve stability and to guarantee a good precision level at low pointing errors, a linear �lter has been
added after the switching structure.4 For thex satellite axis, it is given by the transfer function:

H �lter ;x(s) =
3:039s2 + 1 :457s + 0 :09635

0:3333s4 + 1 :371s3 + 1 :263s2 + 0 :4489s
(8)

These �lters (one per axis) are designed taking into account �exible modes, to satisfy anH2=H1 trade-off of the
linear model close to the equilibrium (j�� j � � L ). For small pointing errors (� L = 0 :3 deg), the decentralized control
Tpi = � H �lter ;i(s) (F0� �� i + F0! �! i) can therefore be considered as optimal.

The control algorithm runs on the on-board computer at a frequency of 4Hz and discrete representations of the
stabilizing �lters are obtained from the corresponding continuous-time transfer functions by using the bilinear trans-
formation.
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II.D. Towards adaptive control

Even though the existing switching structure answers most control objectives (fair system response time, no actuator
saturation, good robustness properties) it has however several drawbacks: the �rst one regards the possible disconti-
nuity in the computed torque at the switching point. This can happen for instance when switching from the coarse to
the �ne pointing mode, if the reference speed has not been reached. Also, if this law needs to be modi�ed, several
parameters need to be changed at the same time, in order to verify the continuity condition (7). For instance, if the
gainF0� needs to be changed, then either� L or ! d have to be modi�ed. Redesign can therefore prove to be delicate.

These are the main reasons for which adaptive control is investigated in this paper. One of the advantages of
using such a strategy, is to have a control law covering a larger functioning domain. This would allow replacing
the switching-based strategy and potentially simplify the validation process: only one control law would have to be
validated instead of two, as in the case of the switching strategy. Adaptive algorithms also have the advantage of gains
that vary continuously in time, thus avoiding the switching related problems. Finally changing the parameters of an
adaptive algorithm that is unique over the whole operating domain will impact the global behaviour of the system.
This would allow, for instance, the improvement of the dynamical performances.

Based on these considerations, an adaptive law based on the proportional-derivative controller is proposed. For
each axisi 2 f x; y; zg this law reads as:

Tpi(t) = � H �lter ;i(s) (K � i(t)�� i(t) + K ! i(t)�! i(t))

where the gainsK i(t) =
h

K � i(t) K ! i(t)
i

are adapted around the valuesF0 =
h

F0� F0!

i
=

h
0:1 2

i

known to be optimal for small pointing errors.
When designing the adaptation rules for the gainsK � i(t) andK ! i(t), a key issues is to into account the constraints

regarding avoidance of reaction wheel saturations, that of its angular speed in particular. Standard approaches to
cope with such actuators limitations are based on anti-windup design techniques.15–17 The central idea behind these
techniques – initially developed in the early 1960's and extensively revisited in the recent literature – consists of
synthesizing a controller augmentation that has no effect when saturation does not occur and that otherwise attempts
to provide satisfactory performances despite possibly large or fast varying control input signals. The anti-windup
device can then be viewed as an additional loop which is designeda posteriori to modify the nominal control laws
when saturations appear in the closed-loop system.

The adopted strategy is somehow related but indirect. It is based on the following facts.

� At small pointing error the gainsF0 =
h

F0� F0!

i
=

h
0:1 2

i
are chosen for fast compensation of

perturbations. If applied at large pointing error (j�� i j large) the �rst term gives a value that goes beyond torque
saturation (and would hence, also generate the wheel speed saturation). In term of adaptation rules, this indicates
that for large pointing errorK � i(t) should be decreased such that the possibility of saturating the reaction wheels
is reduced. Whenj�� i j becomes small,K � i(t) should return the nominal valueF0� . Note that in order to deal
with large pointing errors,K � i(t) should be allowed to take values as small as possible. In other words, the
domain inside which the gain is allowed to evolve should be as large as possible.

� With respect to the gainsK ! i(t), the physics indicate that globally the speed of reaction wheels follows the
angular speed of the satellite. The errors on the angular speed of the satellite should therefore be kept as small
as possible to avoid the speed of reactions wheels to saturate. This imposes to choose�! i = ! i � ! r i with
! r i = 0 and haveK ! i(t) increase whenj�! i j is large. Whenj�! i j becomes small,K ! i(t) should return to the
valueF0! such that the nominal behaviour is kept.

III. Structured adaptive control

This section gives the theoretical results necessary for designing adaptive laws satisfying the constraints of the
considered attitude problem. Conditions for obtaining a stabilizing continuous-time adaptive law are given. The
continuous law is then sampled in order to obtain a discrete algorithm suitable for implementation on the satellite
computer.

The following systems are considered:
8
<

:

_x = Ax + Bu

y = Cx =
h

CT
1 ::: CT

�|

i T
x =

h
yT

1 ::: yT
�|

i T (9)
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wherex 2 Rn is the state,u 2 Rm the control input vector andy 2 Rp the measured output, structured in sub-vectors
yj 2 Rpj , with yj = Cj x, j = 1 : : : �| . | is the number of sub-vectors in which the output is divided and it can be
chosen by the designer.

The existence of a stabilizing static output feedback law is assumed:

u = F0e =
�|X

i = j

F0j ej (10)

whereF0 =
h

F01 ::: F0�|

i
is the stabilizing static output feedback and eachF0j is the gain component corre-

sponding toej . yr represents the reference,e = y � yr the tracking error and vectorsyr ande are structured in a
similar manner to the output:ej = yj � yr j , j = 1 : : : �| . F0 guarantees stability of the closed loop state matrix:
A(F0) = A + BF 0C.

III.A. Structured adaptive control

When considering the attitude control problem for one axis models of the satellite, the static lawu(t) = F0e(t)
corresponds to the proportional-derivative controller (6)

�
e = [ �� �! ]T

�
, which is optimal when the system is closed

to the equilibrium point, but has a limited operating domain(j�� j � 0:3deg). Starting from this static law,u(t) =
F0e(t), we aim at obtaining an adaptive algorithm,u(t) = K (t)e(t), which could cover an extended operating domain.

The considered adaptive control is of the following type:

8
<

:

_K j (t) = � Gj e(t)ej (t)T � j � � D j ;� j (K j (t) � F0j )� j

u(t) = K (t)e(t) =
P �|

j =1 K j (t)ej (t)
; j = 1 : : : �| (11)

It is structured as follows. The control action is decomposed in a sum ofK j (t)ej (t) adaptive feedbacks with the aim
of tuning separately each of the related adaptations laws. This allows to include engineering knowledge about the
process to stabilize. It can for example allow to have fast adaptation with respect to errors measured viae1 and slower
adaptation with respect to the other errors. More than just the speed of adaptation (which is tuned via the positive
de�nite gains� j ), each adaptation law can be given a 'direction' by the choice of matricesGj . ImposingG1e = g1e1

whereg1 is a positive scalar will forceK 1 to decrease whene1eT
1 is large (go for lower gain when the error is large).

ImposingG1e = � g1e1 will on the contrary forceK 1 to grow.
As in the case of attitude control, for one-axis models,e � [ �� �! ]T , with e1 � �� ande2 � �! , �| = 2 , the

proposed structure proves to be valuable for this application. Indeed, the requirements regarding the gains evolution,
presented in the previous section, can be taken into account as each gain component is adapted separately. By imposing

G� =
h

g� 0
i
, g� > 0 andG! =

h
0 g!

i
, g! < 0, K 1(t) � K � (t) will always decrease when�� is non-zero

andK 2(t) � K ! (t) will always grow when�! is non-zero. Combined with a modi�cation which will be detailed in
Section III.B, this will allow to have the gains evolve as required.

The second term in the adaptation law involving the� D j ;� j function works as a barrier preventing the gains to
escape some neighbourhood of the a priori given values of static gainF0. More precisely, the following property is
proved in.18

Lemma 1. If e(t) is bounded for allt � 0 thenjjK j (t) � F0j jj2
D j

< � j � for all t � 0.

Besides guaranteeing that the gains will always stay bounded, the barrier function plays an important role in
proving the stability of the adaptive algorithm.6 Indeed, the stability property is guaranteed by an appropriate choice
for the parameters(Gj ; D j ; � j ) j =1 ::: �| , whereGj de�nes the �rst term used in the adaptation equation (11) andD j

and� j de�ne the barrier function� D j ;� j . The following results give a strategy for �nding such values, based on
passivity properties of the closed-loop. The proofs are not reproduced here in order to give suf�cient space for the
application. Some elements for the proofs can be found in.6,11 See also19 for the positive-real lemma on which
following proposition is based:

Proposition 1. If _x = A(F0)x is asymptotically stable then there exist(P; D j ; Gj ), j = 1 : : : �| , solution to the
following LMI problem:P > 0,
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2

6
6
6
6
4

f P A(F0)gS P B � CT GT
1 � � � P B � CT GT

�|

B T P � G1C � D1 � � � 0
...

...
...

...
B T P � G�| C 0 � � � � D �|

3

7
7
7
7
5

< 0: (12)

Matrices(Gj ; D j ) then de�ne weighted combinations of inputsw and outputsy = Cx such that the following system
is strictly passive:

8
>>>><

>>>>:

_x = A(F0)x + Bw

z =

2

6
4

G1
...

G�|

3

7
5 Cx + 1

2

2

6
4

D1
...

D �|

3

7
5 w

(13)

Theorem 1. Let � > 1 be a given scalar. If(F0; Gj ; D j ) j =1 ::: �| is a feasible solution of the LMI problem (12), then
there exist(Q > 0; Rj ; Tj ; Fj ; � j ) j =1 ::: �| solution to the following LMI problem:

"
Rj QB � CT GT

j

B T Q � Gj C D j

#

� 0; i = 1 : : : �{ (14)

"
Tj (Fj � F0j )T

(Fj � F0j ) D � 1
j

#

� 0; Tr(Tj ) � � j ; j = 1 : : : �| (15)

f QA(F0)gS +
P �|

j =1

�
� j �C T

j Cj + Rj +
�

CT
j (Fj � F0j )T Gj C

	 S
�

< 0: (16)

The solution of the LMIs is such thatu = F e, whereF =
h

F1 ::: F�{

i
, is a stabilizing static output feedback

verifyingjjFj � F0j jj2
D j

� � j . Moreover, whatever positive de�nite� j > 0, the parameters(� j ; Gj ; � j ; D j ; � ) j =1 ::: �|
de�ne a stabilizing adaptive controller given by (11).

Based on these results, the synthesis procedure works as follows: starting from a known stabilizing static gain
F0, Proposition 1 combined to any additional linear constraints, allows to design by simple LMI solving some
(Gj ; D j ) j =1 ::: �| matrices. These matrices being chosen, Theorem 1 outputs the set of scalars(� j ) j =1 ::: �| which are
the last coef�cients to be precisely chosen for guaranteeing stability of the adaptive control. The role of the scalars� j

is to parametrize the distance from the static gainF0 that can take the adaptive gainK (t) (see Lemma 1): the larger
the� j , the more adaptation is allowed, without braking stability properties of the closed loop.

Since the setsf K j : jjK j � F0j jj2
D j

� � j � g not only depend of the values� j , but also on the values ofD j ,
a combined search of(D j ; � j ) is needed if one wants to maximize the sets of possible excursions of the gainsK j

aroundF0j . The following 2-step heuristic procedure is suggested when performing the design of the adaptive law:

1. Minimize
P �|

j =1 wj Tr(D j ) subject to (12) and other possible linear constraints on the(Gj ; D j ) matrices, were
thewj > 0 are positive weights chosen depending on what parameters are expected to wary much or less.

2. Maximize
P �|

j =1 wj � j subject to (14-16).

Finally,18 suggests taking� closed to 1 in order to limit conservatism of the LMIs and proposes the value� = 1 :1.
This value is used throughout the results presented here.

The LMIs involved in the design procedure can be solved in polynomial time with ef�cient semi-de�nite program-
ming algorithms such as SeDuMi.20 The results presented in the following sections have been coded with Matlabc

by using the YALMIP interface.21

III.B. The � - modi�cation

The � -modi�cation has been introduced since the �rst results on adaptive control in order to drive back the control
gains to nominal values once the system has stabilized. It also plays a role in compensating persistent noise. For the
considered structured adaptive laws, the� -modi�cation reads as follows:

_K j (t) = � Gj eeT
j � j � � j (K j (t) � F0j )� j � � D j ;� j (K j (t) � F0j )� j (17)
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where the� j are positive scalars. When neglecting the effects of the other terms, the� -term drives the control gains
to F0j with �rst order linear dynamics. The larger is� j the faster are these dynamics.

There exist few formal results for the stability of adaptive control under� -modi�cation. Convergence of the state
to an equilibrium point is hard to prove in general; only results stating the converge to a bounded set are provided in.8

However, in our considered case, since the static gainF0 - towards which the� -term pushes the adaptive gainK (t) -
is stabilizing, one can expect this modi�ed law to guarantee asymptotic stability, at least locally. More precisely, let
us consider the properties of the adaptive law depending on the values of� j (K j � F0j ). When this term is negligible
stability is then proved by the LMI conditions of Theorem 1. When on the contrary� j (K j � F0j ) is dominant thenK
converges toF0, which is a stabilizing static gain. The stability properties of the closed loop are therefore expected to
be preserved.

The � -modi�cation makes the controller evolve between two values: the nominal gainF0 andK (t) - adaptive
gain for large errors. This type of law is therefore useful for the satellite attitude control problem: for weak errors,
the nominal behaviour is kept, with the controller varying little aroundF0. When the errors are important, the system
drifts from the nominal functioning point andK (t) follows a law which can be approximated by (11), limiting the
actuator solicitations. When the errors re-become weak,K returns toF0 and the nominal behaviour is recovered.

III.C. Discrete implementation of the adaptive law

In view of implementation, the algorithm (17) is sampled, based on the Euler transformation (see22,23). The barrier
function is replaced by a projector whose effect is illustrated, for a two-dimensional case, on Figure 3: if the computed
gain ~K j is such thatjj ~K j � F0j jj2

D j
� � j � , then ~K j is projected on the domain borderjjK j � F0j jj2

D j
= � j � , along

the line connecting~K j to F0j .

Figure 3. Projector function

The following adaptive algorithm is thus proposed:
8
><

>:

~K j (k) = K j (k � 1) � Gj e(k)ej (k)T � j Ts � � j (K j (k � 1) � F0)� j Ts

K j (k) = projD j ;� j
( ~K j (k); F0)

u(k) =
P �|

j =1 K j (k)ej (k)

(18)

whereTs is the sampling period.
Remark:If the gainK j is scalar, the projector can be expressed as a saturation function:

projD j ;� j
( ~K j ; F0j )j ~K j 2 R= satD j ;� j ( ~K j ; F0j ) =

8
>>><

>>>:

~K ; if F0 �
q

� j �
D j

� ~K � F0 +
q

� j �
D j

F0 �
q

� j �
D j

; if ~K < F 0 �
q

� j �
D j

F0 +
q

� j �
D j

; if ~K > F 0 +
q

� j �
D j

(19)
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IV. Adaptive control for DEMETER

The adaptive control strategy exposed in Section III is now applied for the satellite. The general methodology is to
replace the six static gains(K � i; K ! i) i2f x;y;zg with adaptive gains. Preliminary results for only one axis control, with
unstructured adaptive control and without� -modi�cation have been published in.6 Here we consider the 3-axes case
and improve the results thanks to the structured adaptive control and do not deteriorate the optimality for low pointing
errors with an appropriate usage of the� -modi�cation.

IV.A. Design of the adaptive control law

The synthesis model of each axis is given by:
"

1
Hestim(s)

#

Hsat;i(s)HRW(s)H �lter ;i(s) ; i 2 f x; y; zg (20)

The state space matrices(A i; B i; Ci) are then obtained and the 2-step design procedure described in Section III.A is
applied three times, once for each axis.

For the �rst step, solving the LMIs (12), the constraintsG! i =
h

0 g! i

i
, g! i < 0 andG� i =

h
g� i 0

i
,

g� i > 0 are added such that the gains evolve according to the speci�cations described in Section II.D.
The continuous-time adaptation law for each scalar gain reads:

_K � i(t) = �
�
g� i�� 2

i + � � i(K � i(t) � F0� ) + � D � i ;� � i (K � i(t) � F0� )
�

� � i ; i 2 f x; y; zg_K ! i(t) = �
�
g! i�! 2

i + � ! i(K ! i(t) � F0! ) + � D ! i ;� ! i (K ! i(t) � F0! )
�

� ! i
(21)

This gives the following discrete adaptive algorithm:

~K � i(k) = K � i(k � 1) �
�
g� i � �� 2

i (k) + � � i(K � i(k � 1) � F0� )
�

� � iTs (22)
~K ! i(k) = K ! i(k � 1) �

�
g! i � �! 2

i (k) + � ! i(K ! i(k � 1) � F0! )
�

� ! iTs (23)

K � i(k) = satD � i ;� � i ( ~K � i(k); F0� ) (24)

K ! i(k) = satD ! i ;� ! i ( ~K ! i(k); F0! ) (25)

Tai(k) = � (K � i(k) � �� i(k) + K ! i(k) � �! i(k)) (26)

Tpi(k) = H �lter ;i(z)Tai(k) (27)

for i 2 f x; y; zg. The sampling periodTs = 0 :25s in the case of the Myriade AOCS andH �lter ;i(z) are the discrete
transfer functions obtained from the continuous-time �ltersH �lter ;i(s) by applying the bilinear transformation. The
control structure of each axis thus contains a proportional-derivative adaptive controller (22-26), with gains adapted
around the nominal valuesF0� = 0 :1, F0! = 2 . This adaptive structure is followed by the invariant �lter (22).

The values of the different parameters, obtained by solving the LMIs (12-16), are summarized in Table 1. The
weightsw� = 100, w! = 1 have been chosen in order to give more importance to large variation domains on theK � i

gains. The domains inside which the gains for each axis are allowed to evolve are given in Table 2. There are almost
100% admissible variations of the adaptedK � i gains and about 20% admissible variations of the adaptedK ! i gains.

Table 1. LMI solving results

g� i g! i D � i D ! i � � i � ! i

x axis 53.52 -941.44 1135.46 9683.27 8.9 1831
y axis 175.71 -208.04 3615.9 30954 28.56 3370.7
z axis 231.04 -843.44 4754.61 40796.6 36.17 4338.59

Another important choice is that of� � i and� ! i. The following reasoning illustrates, how this choice is made for
the parameters� � i: suppose a large attitude reference is applied, for instance, on thex axis. After this, the large value
of the �� x term in the adaptation equation (22) causes the gainK � x to decrease and reach the border of the variation
domain. At this point its value is constant:K � x = K � x;b = 0 :0071, as the saturation function (24) stops the gain from

9 of 16

American Institute of Aeronautics and Astronautics



Table 2. LMI solving results

x axis y axis z axis

K � i [ 0:0071 0:1929 ] [ 0:0072 0:1927 ] [ 0:0072 0:1927 ]
K ! i [ 1:5439 2:4561 ] [ 1:6580 2:3927 ] [ 1:6539 2:3461 ]

decreasing further.K � x will then leave the domain limit and evolve towards the valueF0� = 0 :1 when the� -term
balances the error term. This occurs when the attitude error reaches a threshold value,�� thresh;x, verifying:

� g� x � �� 2
thresh;x = � � x(K � x;b � F0� ) (28)

As g� x, K � x;b andF0� are known, the parameter� � x allows de�ning the point at which the gain returns to its nominal
value. In the following simulations, two sets of numerical values are used:f � � x = 4 :4; � � y = 14:4; � � z = 19g and
f � � x = 1 :1; � � y = 3 :6; � � z = 4 :8g corresponding to thresholds of 5 and 2.5 degrees respectively for each axis.

The same reasoning applies for choosing the� ! i values. The choices� ! x = 5 :66 � 10� 4, � ! y = 1 :65 � 10� 4 and
� ! z = 6 :76� 10� 4 are made, which correspond to a speed threshold of 0.03 deg/s for each axis.

The last parameters to be chosen are the� � i and� ! i adaptation gains. The simulations are done with the following
values

� � x = 0 :15 ; � � y = 0 :05 ; � � z = 0 :03
� ! x = 9 :7 ; � ! y = 43:9 ; � ! z = 10:8

that have been chosen in order to have reasonable values of the gains variation,K � i(k) � K � i(k � 1) andK ! i(k) �
K ! i(k � 1), over the whole functioning domain.

IV.B. Simulation results

Simulation results corresponding to the satellite in closed loop con�guration with the adaptive law (22-27) are given
next. A 3-axes simulator of the DEMETER AOCS, involving the �exible satellite, actuators and sensors models is
considered. The satellite model with the inertias having nominal values and �exible modes de�ned by (3) is �rst
considered. Responses obtained with the adaptive law with two sets of values for the� � parameters are compared with
results given by the application of the existing control strategy, based on the switching law (5-6), described in Section
II.C,

Figures 4 and 5 show the satellite response to step attitude references of amplitude of 20, 10 and 15 degrees for the
x, y andz axis respectively. The �rst step reference covers the whole domain of the Demeter mission mode. Figure
4 shows the signals corresponding to thex axis: measured satellite angular position and speed, the corresponding
adaptive gains as well as the actuator response (angular reaction wheel speed). The same signals corresponding to the
y andz axes are plotted in Figure 5.

These results show that the proportional-derivative adaptive law allows tracking of attitude references of large
values without saturating the actuators: even if the adaptive law generates larger a control action than the switch-based
law, the angular speeds attained by the reaction wheels do not surpass 40 % of the maximal allowed value. The
adaptation of the gains thus allows to extend signi�cantly the functioning domain which could be covered by the static
proportional-derivative law. The switch-based law could therefore be replaced by the proposed adaptive algorithm:
this would also allow a gain in response time, as it can be seen on the attitude plots of Figures 4 and 5.

When analysing the plots of the adaptive gains, three phases can be observed: �rst, after the reference is applied
the gains evolve rapidly and reach the barrier of their allowed variation domains. Follows a phase when they remain
constant, at values on the barrier (for thex axis, this occurs forK � x betweent = 0 andt � 500, and forK ! x between
t = 0 andt � 250). Finally, the gains return to their nominal values once that the attitude error and the angular speed
respectively are lower than the thresholds de�ned by the values of the� parameters.

The in�uence of these parameters is easy to observe. On thex axis for instance, for� � x = 4 :4, K � x starts evolving
towards its nominal value when�� x = 5deg (t � 500s), while if � � x = 1 :1, K � x returns to its nominal value when
�� x = 2 :5deg (t � 700s), as predicted by (28). WhenK � x starts increasing an acceleration phase can be observed
on the attitude plots. The moment when this acceleration appears thus depends on the value of� � x and this parameter
in�uences in this way the response time. For� � x = 4 :4 the acceleration phase occurs earlier (t � 500s) than for
� � x = 1 :1 (t � 700s) and thus the response is faster when� � x is larger. At the same time, one can also note that the
actuator response is also of larger amplitude for larger values of� � x. This analysis shows that the values of� in�uence
the closed loop behaviour of the satellite.� � i in particular can thus be used as design parameters.
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Figure 4. Tracking of attitude references - X axis
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