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Jérôme Morio

ONERA, the French Aerospace Lab

F-91761 Palaiseau, FRANCE

François Le Gland

INRIA

Campus de Beaulieu

35042 Rennes, FRANCE

ABSTRACT

We propose some methodological basis for an improvement to the splitting method for a Markov process

that evolves over a deterministic time horizon. Our algorithm is based on a decomposition of the selection

functions that gives more importance to some well-chosen trajectories, typically those trajectories that

manage to move earlier than others towards the critical region. Central limit theorem is established and

numerical experiments are provided.

1 INTRODUCTION

Rare event estimation is of great interest in many scientific and industrial areas such as air traffic management,

telecommunication, nuclear engineering, climatology, etc. Crude Monte Carlo simulations are no longer

efficient for low probabilities and specific techniques dedicated to rare events are required. When the event

of interest is modelled as the first hitting time for Markov chain or process, importance sampling (Juneja

and Shahabuddin 2006), weighted importance resampling (Del Moral and Garnier 2005) and importance

splitting (L’Ecuyer, Demers, and Tuffin 2006) are the most valuable methods to deal with this problem.

This paper focuses on the importance splitting method. The idea is to decompose the sought probability

in a product of conditional probabilities that can be estimated accurately with a reasonable computation

time. Numerous variants have been worked out and presentations of the summary of the methods can

be found in (L’Écuyer, Demers, and Tuffin 2007), (L’Écuyer et al. 2009). Splitting methods have no-

tably been compared in (L’Ecuyer, Demers, and Tuffin 2006). Latest developments, linked with genetic

algorithms, can be found in (Cérou et al. 2005), (Cérou et al. 2006), where rigorous proofs of conver-

gence are given. In addition, approximations of the stochastic process law in the rare event regime are

obtained. This latest variant will be used in this article. It is organised as follows. First, standard splitting

algorithm is recalled, and a multidimensional adaptive algorithm is given. We propose then a way to

improve splitting algorithm, by giving more importance to some selected particles. A central limit theo-

rem with regard to this new method is established. Finally, numerical experiments on a toy case are provided.

2 STANDARD SPLITTING ALGORITHM

Splitting methods are of great interest when one has to work with stochastic processes that evolve in

continuous time. The framework is the following. Given a probability space (Ω,F ,P) and a measurable

metric space E, let X : (ω, t)∈ Ω× [0,+∞)→ Xt(ω)∈ E be a Markov process with continuous trajectories,

or at least right continuous with left hand limits trajectories, let B be a measurable subset of the state space

E and TB the first hit time of B, given by

TB = inf{t ≥ 0,Xt ∈ B}.
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Given T a deterministic time, or a random stopping time with finite expectation, the event

{TB ≤ T}= {Xt ∈ B, for some t ≤ T},

is supposed to be very rare. Its probability is typically lower than 10−4. In this context, splitting methods

give efficient numerical approximations to the rare event probability P(TB ≤ T ), and to the law of the

process in the rare regime E( f (Xt , 0 ≤ t ≤ TB)|T ≤ TB). The principle of splitting is to consider a sequence

of decreasing supersets of B× [0,∞) :

E × [0,∞)⊃ A1 ⊃ ·· · ⊃ Am−1 ⊃ Am = B× [0,∞), (1)

and to estimate each probability that the process t 7→ (Xt , t) starting from Ak−1 reaches Ak before time T .

Let us define Tk = inf{t ≥ 0 : (Xt , t) ∈ Ak} for k = 1, . . . ,m. It is worth noting that the existence of

left-hand limits ensures that (XTk
,Tk) ∈ Ak where Ak is the closure of Ak, hence (XTk

,Tk) ∈ Ak provided Ak

is a closed subset. From now on, it is assumed that the supersets introduced in (1) are all closed subsets.

A Bayes formula gives the following product decomposition equation

P(TB ≤ T ) =
m

∏
k=1

pk where p1 = P(T1 ≤ T ) and pk = P(Tk ≤ T | Tk−1 ≤ T ) for k = 2, . . . ,m.

The intermediate subsets have to be chosen such that the probabilities pk are large enough to be

estimated accurately with Monte Carlo. In practice, in a first stage, N samples of Markov process (Xt , t) are

generated until time T1 ∧T = min(T1,T ). If I1 is the number of trajectories which have reached A1, then

p1 = P(T1 ≤ T ) is estimated by I1/N. For stage k ≥ 1, N starting points are randomly and uniformly chosen

amongst the Ik crossing points between the subset Ak and the previously sampled trajectories. N paths of the

process (Xt , t) are sampled from these crossing points according to the Markov dynamic of the process until

time Tk+1∧T . If Ik+1 is the number of trajectories that have reached Ak+1, then pk+1 = P(Tk+1 ≤ T | Tk ≤ T )
is estimated by Ik+1/N.

2.1 Feynman-Kac Interpretation of the Algorithm

We will now give a Feynman-Kac interpretation of the algorithm, slightly different from the one given in

(Cérou et al. 2006) for the sake of comprehension of the sequel. To model the algorithm, it is convenient

to consider the E ×R+ valued random variable Zk

Zk = (XTk∧T ,Tk ∧T ).

The sequence Zk is a Markov chain with initial distribution η0 ×δ0, where η0 is the distribution of X0 and

δ0 is the Dirac mass distribution at 0, and with transition kernels

Qk(x, t,dx′,dt ′) = P(XTk∧T ∈ dx′,Tk ∧T ∈ dt ′|XTk−1∧T = x,Tk−1 ∧T = t).

Considering next the selection functions gk(x, t) = 1{(x, t) ∈ Ak}, it is possible to give an interpretation of

the rare event probability in terms of the Feynman-Kac distribution

〈γk, f 〉= E[ f (Zk)
k

∏
p=1

gk(Zk)] = E[ f (XTk
,Tk)1{Tk ≤ T}] and 〈µk, f 〉= 〈γk, f 〉

〈γk,1〉
.

The nonnegative distributions γk satisfy the recurrent relation γk = gk (γk−1 Qk) = γk−1 Rk, where the non-

negative kernels Rk are defined by Rk(z,dz′) = gk(z
′)Qk(z,dz′). One has thus 〈γk,1〉 = P(Tk ≤ T ) and
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µk(dx,dt) = P(XTk
∈ dx,Tk ∈ dt|Tk ≤ T ) is then the entrance distribution in the subset Ak. In the same way,

defining

〈ηk, f 〉= E[ f (Zk)|Tk−1 ≤ T ],

one obtains 〈ηk,gk〉=P(Tk ≤T |Tk−1 ≤T )= pk and the following recursive equation 〈γk, f 〉= 〈ηk,gk f 〉〈γk−1,1〉.
Now, the following main formula can be derived

P(TB ≤ T ) = 〈γm,1〉=
m

∏
k=1

〈ηk,gk〉.

2.2 The Importance Function

The supersets Ak ⊃ B× [0,∞) are often defined by threshold exceedance of a real–valued function Φ, which

is called importance function in the splitting algorithm, i.e.

Ak = {(x, t) ∈ E × [0,∞) : Φ(x, t)≥ Sk} and Tk = inf{t ≥ 0, Φ(Xt , t)≥ Sk}, (2)

so that {Tk ≤ T}= {Φ(Xt , t)≥ Sk, for some 0 ≤ t ≤ T}= {max0≤t≤T Φ(Xt , t)≥ Sk}, for all k = 1, . . . ,m,

with a suitable sequence of real numbers S1 < S2 < · · ·< Sm = S. In particular for the ultimate threshold

S = Sm, one should have TB = inf{t ≥ 0 : Φ(Xt , t) ≥ S} = inf{t ≥ 0 : Xt ∈ B} , which means that some

compatibility condition should hold for the importance function Φ and for the threshold S to make sure that

the two definitions of the event {TB ≤ T} are consistent. Even though the optimal importance function Φ is

time–dependent, it is often the case that a simpler but sub–optimal time–independent importance function

Φ is used, which is already available and intrinsically given by the problem.

It is well known that the choice of a good importance function is crucial to get reliable estimation of

the probability P(TB ≤ T ) (Glasserman et al. 1998). (Cérou et al. 2006) shows that the optimal subsets Ak

are obtained when the probability of reaching the critical set B× [0,∞) starting from any possible hitting

position and time (XTk
,Tk) = (x,s) ∈ Ak should not depend on (x,s). Defining optimal subsets would thus

lead to know uB(x,s) = P(Xt ∈ B, for some s ≤ t ≤ T |Xs = x) for every (x,s) ∈ E × [0,∞). Unfortunately,

this choice is clearly unrealistic for most practical problems, since knowing uB(x,s) implies the knowledge

of P(TB ≤ T ). The paper (Garvels, Van Ommeren, and Kroese 2002) links the optimal subsets to an optimal

importance function and provides methods to estimate it, but the framework is restrained to discrete state

space Markov process. To determine an importance function, optimal or not, is of great interest since it

enables an adaptive choice of the intermediate subsets, as explained in the next section.

2.3 Adaptive Choice of the Thresholds

When the supersets Ak ⊃ B× [0,∞) are characterised as in equation (2), the thresholds Sk can easily be

adaptively chosen. An adaptive choice of the thresholds was first given in (Garvels 2000), then convergence

proof for the dimension one is given in (Cérou and Guyader 2007), and a multidimensional algorithm is

evoked in (Cérou et al. 2006). In this article we propose another method, used in air traffic management

context in (Jacquemart and Morio 2013), which enables easy implementation of the splitting algorithm

in the multidimensional and non-homogeneous case. It is decomposed in two stages at each iteration

k = 1, . . . ,m. The first stage enables to estimate intermediate thresholds and the second one determines

the starting points at level Ak. For k ≥ 1, assume that one knows the threshold Sk and an approximation

of the entrance distribution µk, denoted by µ̂k. An adaptive method to estimate the threshold Sk+1 is to

consider quantile estimation. One can indeed sample N new Markov processes t 7→ (X i
t , t), i = 1, . . . ,N,

starting from the entrance distribution at level Ak, namely µ̂k, and determine the maxima of Φ(X i
t , t) before

final time T . The threshold Sk+1 is defined as the (1− p)-quantile of these maxima, and one has thus

P(Tk+1 ≤ T |Tk ≤ T ) ≈ p. To determine an approximation of the entrance distribution µk+1, a new set of

N′ trajectories is sampled from the entrance distribution µ̂k and until time T or until the first time they hit
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the threshold Sk+1. The Nk crossing points ei = (X i
T i

k∧T
,T i

k ∧T ) for which T i
k ≤ T define an approximation

of µk+1:

µ̂k+1 ≈
1

Nk

Nk

∑
i=1

δei .

An approximation of the conditional probability P(Tk+1 ≤ T |Tk ≤ T ) is given by Nk/N′. The algorithm

has converged when Sk ≥ S. Amongst the last sample, a proportion r of the trajectories reaches the final

threshold S and one has the following estimation of the rare event probability, where m is the number of

created thresholds

P(TB ≤ T )≈ r×
m

∏
k=1

Nk

N′ .

One has thus fully determined adaptively with this algorithm

• the intermediate subsets Ak, implicitly defined with the importance function Φ,

• approximations of the entrance distributions µk,

• an estimation of the rare event probability.

In the next section, we propose a way to improve the efficiency of the splitting algorithm when intermediate

thresholds S1 < .. . < Sm are given. They can for instance be determined by the previous procedure.

3 A COMBINED IMPORTANCE SPLITTING AND SAMPLING ALGORITHM

In the scientific literature, several methods have been worked out in order to combine in different ways

the importance splitting algorithms and other statistical methods. Most of them act on the dynamic of the

process. See (L’Écuyer, Demers, and Tuffin 2007) for a survey. In this article, the idea is to use different

selection functions, and not to use auxiliary transitions kernels. Defining the subset Ak with a non-optimal

importance function Φ is most of the time the best to do, and the adaptive algorithm given in section 2.3

is a very simple way to proceed. We assume to be in the case when one has to work with a deterministic

horizon time T . Intuitively, trajectories that have reached the level Ak early are more likely to reach the rare

set B than trajectories that have reached the level Ak later on. We propose thus to give more importance

to them, selecting them mostly than the others. After that, a weighting step is required not to bias the

estimated probability.

The following section is organised as follows. Firstly, an interpretation of the combined importance

splitting and sampling (I2S) algorithm in terms of Feynman-Kac distributions is given. A pathwise point

of view is required but is only a trick that naturally disappears. Then, the proposed algorithm is rewritten

in term of the original continuous time Markov process {Xt , t ∈ [0,∞)}. Finally, a central limit theorem

on the probability estimation is given.

3.1 Interpretation of the Algorithm in Term of Feynman-Kac Distributions

The key idea is to decompose the potential function as gk = g
imp
k gred

k , where the function gred
k is used to

resample the successful trajectories, and where the function g
imp
k is used to measure the importance of

trajectories with regards to the estimations, in other words to weight trajectories. We propose the following

factorization

g
imp
k (x, t) =

1

ak(t)
and gred

k (x, t) = ak(t)1{Φ(x, t)≥ Sk}, (3)

so that gred
k g

imp
k = gk, with a function t 7→ ak(t) that should be nonincreasing, in order to select preferably

those trajectories that reach the level Ak early. The unnormalised Feynman-Kac distribution γk can be
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rewritten in the following way

〈γk, f 〉= E[ f (Zk)
k

∏
p=1

gp(Zp)] = E[ f (Zk)
k

∏
p=1

gimp
p (Zp)

k

∏
p=1

gred
p (Zp)].

One can decide to group the potentials g
imp
p with the test function f . To introduce the representation

of the model in term of Feynman-Kac distributions, it is convenient to adopt a path point of view. Let Yk

denote the historical process of the Markov chain Zk:

Yk = Z0:k = (Z0,Z1, . . . ,Zk).

The Markov chain Yk is characterized by the probability transitions:

Q•
k(yk−1,dy′k) = Q•

k(z0, . . . ,zk−1,dz′0, . . . ,dz′k) = δ(z0,...,zk−1)(dz′0, . . . ,dz′k−1)Qk(zk−1,dz′k)

where Qk(zk−1,dz′k) = P(Zk ∈ dz′k|Zk−1 = zk−1) are the transition kernels of the Markov chain Zk. The

following normalized Feynman-Kac distributions on the path space can be defined

〈γ•k , f 〉= E[ f (Yk)
k

∏
p=1

g•p(Yp)] and 〈µ•
k , f 〉= 〈γ•k , f 〉

〈γ•k ,1〉

with the notation g•p(yp) = g•p(z0, . . . ,zp) = gred
p (zp). The unnormalized distributions satisfy the recursive

equation

γ•k = g•k(γ
•
k−1Q•

k) = g•k(µ
•
k−1Q•

k)〈γ•k ,1〉. (4)

To connect the two distributions γk and γ•k , we use the function T •
k f defined on the path space by

T •
k f (yk) = T •

k f (z0, . . . ,zk) = f (zk)
k

∏
p=1

gimp
p (zk),

so that 〈γk, f 〉 = E[ f (Zk)∏
k
p=1 gp(Zp)] = E[T •

k f (Yk)∏
k
p=1 g•p(Yp)] = 〈γ•k ,T •

k f 〉. In particular, with f ≡ 1,

one obtains 〈γ•k ,T •
k 1〉 = 〈γk,1〉 = P(Tk ≤ T ). However, the normalizing constant 〈γ•k ,1〉 does not seem to

have any useful probabilistic interpretation.

3.2 Interacting Path-Particle Interpretation

We are interested in approximations of the normalized distribution µ•
k−1 with the following form

µ•,N
k−1 =

N

∑
i=1

wi
k−1δ

ξ •,i
k−1

, with
N

∑
j=1

w
j

k−1 = 1

where, for all i= 1, . . . ,N the particle ξ •,i
k−1 is a random trajectory ξ •,i

k−1 = (ξ i
0,k−1, . . . ,ξ

i
k−1,k−1). Furthermore,

motivated by equation (4) one can write

µ•,N
k−1 Q•

k(dy′k) =
N

∑
i=1

wi
k−1 Q•

k(ξ
•,i
k−1,dy′k), (5)

which yields to the particle approximation η•,N
k =

1

N

N

∑
i=1

δ
ξ •,i

k

of the distribution η•
k = µ•

k−1 Q•
k , where

independently for all i = 1, . . . ,N, the trajectory ξ •,i
k is sampled from the finite mixture distribution (5). In

practice, the transition from µ•,N
k−1 to η•,N

k is obtained as follows. Independently for all i = 1, . . . ,N
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1. a path ξ̂ •,i
k−1 = (ξ̂ i

0,k−1, . . . , ξ̂
i
0,k−1) is selected amongst the current population (ξ •,1

k−1, . . . ,ξ
•,N
k−1), ac-

cording to their respective weights (w1
k−1, . . . ,w

N
k−1).

2. the random path ξ •,i
k = (ξ i

0,k, . . . ,ξ
i
k,k) is sampled from the distribution Q•

k(ξ̂
•,i
k−1,dy′k) : in other

words, we set ξ i
p,k = ξ̂ i

p,k−1 for all p = 0, . . . ,(k−1), and the random variable ξ i
k,k is sampled from

the distribution Qk(ξ
i
k−1,k,dz′k).

With the recursive equation (4), one obtains the following particle approximation of the unnormalized

distribution γ•k :

γ•,Nk = g•kη•,N
k 〈γ•,Nk−1,1〉=

(
1

N

N

∑
i=1

g•k(ξ
•,i
k )δ

ξ •,i
k

)
〈γ•,Nk−1,1〉.

From there, one can deduce several useful approximations

• the approximation of the normalization constant as a recursive equation

〈γ•,Nk ,1〉=
(

1

N

N

∑
i=1

g•k(ξ
•,i
k )

)
〈γ•,Nk−1,1〉,

• the particle approximation of the normalized distribution µ•,N
k as a recursive equation

µ•,N
k =

γ•,Nk

〈γ•,Nk ,1〉
=

N

∑
i=1

g•k(ξ
•,i
k )

∑
N
j=1 g•k(ξ

•, j
k )

δ
ξ •,i

k

=
N

∑
i=1

wi
kδ

ξ •,i
k

,

which implicitly defines the weight wi
k =

g•k(ξ
•,i
k )

N

∑
j=1

g•k(ξ
•, j
k )

for all i = 1, . . . ,N,

• the approximation of the probability Pk := P(Tk ≤ T ) = 〈γ•k ,T •
k 1〉 as

PN
k = 〈γ•,Nk ,T •

k 1〉=
(

1

N

N

∑
i=1

g•k(ξ
•,i
k )T •

k 1(ξ •,i
k )

)
〈γ•,Nk−1,1〉.

It is now possible to re-interpret these formulae with the potential functions gred
k and g

imp
k in the following

way. To this end, let ξ i
k = ξ i

k,k denote the final state of the trajectory ξ •,i
k = (ξ i

0,k, . . . ,ξ
i
k,k). One has then

g•k(ξ
•,i
k ) = gred

k (ξ i
k), and if one sets vi

k = T •
k 1(ξ •,i

k ), one remarks also that

vi
k =

k

∏
p=1

gimp
p (ξ i

p,k) = g
imp
k (ξ i

k,k)
k−1

∏
p=1

gimp
p (ξ i

p,k) = g
imp
k (ξ i

k,k)
k−1

∏
p=1

gimp
p (ξ̂ i

p,k−1).

One deduces then

〈γ•,Nk ,1〉=
(

1

N

N

∑
i=1

gred
k (ξ i

k)

)
〈γ•,Nk−1,1〉 and PN

k =

(
1

N

N

∑
i=1

gred
k (ξ i

k)v
i
k

)
〈γ•,Nk−1,1〉=

N

∑
i=1

gred
k (ξ i

k)vi
k

N

∑
i=1

gred
k (ξ i

k)

〈γ•,Nk ,1〉.

Here finally comes the following recursive non pathwise implementation, in terms of a mixed population,

where for all i = 1, . . . ,N the particle Ξi
k = (ξ i

k,v
i
k) is a pair (position, auxiliary weight), evolving in the

following way. Independently, for all i = 1, . . . ,N
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1. a pair Ξ̂i
k−1 = (ξ̂ i

k−1, v̂
i
k−1) is selected among the current population (Ξ1

k−1, . . . ,Ξ
N
k−1), according to

their respective weights (w1
k−1, . . . ,w

N
k−1),

2. the variable ξ i
k is sampled with the distribution Qk(ξ̂

i
k−1,dz′), and we set vi

k = g
imp
k (ξ i

k) v̂i
k−1,

3. the normalized weight is defined as wi
k ∝ gred

k (ξ i
k).

This procedure is rewritten below in algorithm 1 in terms of the original continuous time Markov

process {Xt , t ∈ [0,∞)} and in the special case g
imp
k (x, t) =

1

ak(t)
and gred

k (x, t) = ak(t)1{Φ(x, t)≥ Sk}.

Algorithm 1: I2S algorithm

Initialisation

Set J0 = {1, . . . ,N} and θ̂0 = 0.

for i = 1, . . . ,N do

Set T i
0 = 0 and sample X i

0 independently from law η0.

Set vi
0 = 1/N and wi

0 = 1/N the initial importance weights and resampling weights.

for k = 1, . . . ,m do

for i = 1, . . . ,N do

Select an index I ∈ Jk−1 from the weighted law ∑
j∈Jk−1

w
j

k−1δ j.

Set X̂ i
k−1 = X I

k−1, T̂ i
k−1 = T I

k−1 and v̂ i
k−1 = vI

k−1.

Sample a path X i
t starting from state X̂ i

k−1 at time T̂ i
k−1 until time T i

k ∧T ,

where T i
k = inf{t ≥ T̂ i

k−1 : Φ(X i
t , t) ∈ Ak}.

Set the importance weights vi
k and the resampling weights wi

k as

vi
k =

1

ak(T
i

k )
v̂ i

k−1 and wi
k = ak(T

i
k ) 1{T i

k ≤ T}.

Normalize the resampling weights.

Set Jk = {i = 1, . . . ,N , T i
k ≤ T} and define

θ̂k =

(
1

N
∑
i∈Jk

ak(T
i

k )

)
θ̂k−1 and P̂ I2S

k =

∑
i∈Jk

ak(T
i

k )vi
k

∑
i∈Jk

ak(T
i

k )
θ̂k

Estimation

P(TB ≤ T )≈ P̂ I2S
m

3.3 Variance Analysis

The main result of this section is the central limit theorem for the estimation of the rare event probability with

the combined importance sampling and importance splitting algorithm. It is given in terms of Feynman-Kac

distributions defined in (6). A more explicit expression in terms of the functions ak(t) is obtained taking

into account the special form (3) of the factorization.

Theorem 1 The I2S algorithm is unbiased. Furthermore, the central limit theorem for the relative error

of the estimator P̂ I2S
m given by the I2S algorithm stands as follows

√
N

P̂ I2S
m −PB

PB

Law
=⇒

N→+∞
N (0,Vm),
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where

Vm =

[〈η0,(R1:m1)2〉
〈η0,R1:m1〉2

−1

]
+

m

∑
k=1

[
〈γ red

k−1,1〉
〈γ imp

k ,gred
k (Rk+1:m1)2〉

〈γk,Rk+1:m1〉2
−1

]
.

Here, the functions Rk+1:m f are defined inductively by

Rk:m f = Rk(Rk+1:m f ) and Rm+1:m f = f by convention,

and have the probabilistic interpretation Rk+1:m f (z) = E[ f (Zm)
m

∏
p=k+1

gp(Zp)|Zk = z]. Explicit expression

of the variance can also easily be obtained in terms of the functions ap(t) and uB(x, t) = P(TB ≤ T |Xt = x).

Proof. When importance sampling in added to the multilevel algorithm, the variance takes the form

(Le Gland 2007):

Vm =
var(R1:m1,η0)

〈η0,R1:m1〉2
+

m

∑
k=1

Ck +
m

∑
k=1

Dk,

where Ck =
〈γ imp

k−1,1〉〈γ red
k−1,1)〉

〈γk−1,1〉2

var(gk Rk+1:m1,µ
imp
k−1Qk)

〈µk−1,Rk:m1〉2
and Dk =

〈γ imp
k−1,1〉〈γ red

k−1,1〉
〈γk−1,1〉2

〈µ imp
k−1,Rk:m1〉2

〈µk−1,Rk:m1〉2
−1.The

distribution µ red
k and µ

imp
k are the normalised distributions associated with γ red

k and γ
imp
k , namely

µ red
k =

γ red
k

〈γ red
k ,1〉 and µ

imp
k =

γ
imp
k

〈γ imp
k ,1〉

,

and following (Le Gland 2007), the unnormalised distributions γ red
k and γ

imp
k are defined as follows

〈γ red
k , f 〉= E[ f (Zk)

k

∏
p=1

gred
p (Zp)] and 〈γ imp

k , f 〉= E[ f (Zk)
k

∏
p=1

(
gimp

p (Zp)
)2

k

∏
p=1

gred
p (Zp)]. (6)

In the original paper (Le Gland 2007), γ
imp
k is denoted as γ�k , and it is rewritten here for the sake of clarity.

The nonnegative distributions γ red
k and γ

imp
k satisfy the recurrent relations

γ red
k = γ red

k−1 Rred
k and γ

imp
k = γ

imp
k−1 R

imp
k ,

where the nonnegative kernels Rred
k and R

imp
k are defined by

Rred
k (z,dz′) = gred

k (z′)Qk(z,dz′) and R
imp
k (z,dz′) = (g

imp
k (z′))2 gred

k (z′)Qk(z,dz′).

Notice that Qk(gk Rk+1:n) = Rk Rk+1:n = Rk:n, hence

var(gk Rk+1:m1,µ
imp
k−1Qk) = 〈µ imp

k−1 Qk,(gk Rk+1:m1)2〉−〈µ imp
k−1 Qk,(gk Rk+1:m1)〉2

= 〈µ imp
k−1 Qk,(gk Rk+1:m1)2〉−〈µ imp

k−1,Rk:m1〉2.

From this equality and using the fact that g2
k = gk, one deduces that

Ck +Dk =
〈γ imp

k−1,1〉〈γ red
k−1,1〉

〈γk−1,1〉2

〈µ imp
k−1 Qk,gk (Rk+1:m1)2〉
〈µk−1,Rk:m1〉2

−1= 〈γ red
k−1,1〉

〈γ imp
k−1 Qk,gk (Rk+1:m1)2〉

〈γk−1,Rk:m1〉2
−1.



Jacquemart-Tomi, Le Gland, and Morio

Finally, notice that for any bounded measurable function f

〈γ imp
k−1 Qk,gk f 〉=

∫

z′
gk(z

′) f (z′)
∫

z
γ

imp
k−1(dz) Qk(z,dz′)

=
∫

z′
(gk(z

′))2 f (z′)
∫

z
γ

imp
k−1(dz) Qk(z,dz′), since g2

k = gk

=
∫

z′
gred

k (z′) f (z′)
∫

z
γ

imp
k−1(dz)(g

imp
k (z′))2 gred

k (z′)Qk(z,dz′)

=
∫

z′
gred

k (z′) f (z′)
∫

z
γ

imp
k−1(dz)R

imp
k (z,dz′)

=
∫

z′
gred

k (z′) f (z′) γ
imp
k (dz′) = 〈γ imp

k ,gred
k f 〉.

Thus,

Ck +Dk = 〈γ red
k−1,1〉

〈γ imp
k ,gred

k (Rk+1:m1)2〉
〈γk,Rk+1:m1〉2

−1.

4 NUMERICAL EXPERIMENTS

The algorithm is tested on the Brownian bridge {Xt , 0 ≤ t ≤ 1}, which is solution of the following real

stochastic differential equation dXt = Xt/(t −1)dt +dWt , with X0 = 0. One can show that X1 = 0 almost

surely and that

P(TB ≤ 1) = P( sup
0≤t≤1

Xt ≥ B) = exp−2B2

. (7)

Thresholds for the splitting algorithm can easily be chosen adaptively, as explained in section 2.3. According

to (Cérou et al. 2006), to choose pk = p for all k = 1, . . . ,m, with p close to 1 is optimal in term of

variance reduction. But if p is too close to 1, the number of subsets increases and consequently, the

total simulation time increases. According to our experiments, setting p = 0.6 is a good trade-off for the

Brownian bridge case. In all cases, the number m of intermediate subsets is related to the probability of

interest P = P(TB < T ) with the formula P = ∏
m
k=1 pk = pm. Thus, m = logP/ log p and the total number of

trajectories of the Markov chain used the algorithm is then in O(m×N). The multinomial re-sampling used

at each step can be in O(N). Neglecting the computation of the importance weights and the re-sampling

weights, the complexity of the algorithm is then related to the rarity of the event and equals to O(m×N).
This result stands for I2S algorithm and standard splitting alike. One can also notice that the estimation of

thresholds can efficiently be done with a small number of particle. In this article, 100 particles have been

used. The ap(t) functions have to be soft enough to preserve some diversity. According to our experiments,

an exponential selection is too strong and does not ensure variance reduction any more. Furthermore, an

easy tuning is required to proceed to several tests. For all these reasons, the ap functions are chosen in the

parametric family defined by

ap(t) = aα
p (t) =

1

tα
,

for α ≥ 0. For any real N-sample (x1, . . . ,xN), the accuracy of an estimator is measured by its relative

standard deviation (rSTD), defined as the ratio of the empirical standard deviation to the empirical mean.

Algorithms I2S and standard splitting are unbiased. In figure (1), we compare the rSTD given by the

probability estimation of equation (7) with standard splitting algorithm, and I2S algorithm (algorithm 1).

We choose α = 0.05. I2S is efficient when compared to standard splitting. In figure (2), one presents the

evolution of the rSTD in function of parameter α . An optimum value of α minimizing rSTD can be found.

Notice that α = 0 corresponds to the standard splitting case. The results of figures (1) and (2) have been
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obtained with N = 1000 particles and over 250 retrials for each α . To understand the gain in probability

estimation via I2S algorithm, table 1 compares rSTD of I2S algorithm with parameters B = 4, α = 0.05

and N = 5000 and rSTD of standard splitting for different values of N. Estimations are obtained over 250

retrials.
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Figure 1: Standard splitting and I2S algorithm. Figure 2: I2S rSTD with different functions aα
p (t).

When one chooses optimal subsets in the standard splitting method, as explained in section 2.3, the

theoretical relative standard deviation can be computed (Cérou et al. 2006), and equals to

1

N

m

∑
k=1

(
1

pk

−1

)
. (8)

We set again pk = p = 0.6 for all k = 1, . . . ,m. Table 2 compares the theoretical rSTD of standard splitting

with optimal subset (Opt rSTD) given by equation (8), the empirical rSTD given by standard splitting with

non-optimal subsets, and the rSTD given by I2S algorithm. The number of trajectories sampled at each

threshold are the same for both algorithms. One can observe that I2S performances are about halfway the

standard splitting with optimal and non-optimal subtsets, in terms of rSTD.

5 COMPARISON WITH EXISTING ALGORITHMS

Standard splitting The importance function Φ can be difficult to choose in an optimal way. A bad

choice would lead to inaccurate estimations, and the optimal one depends on the unknown probability to

estimate. Our implementation of the proposed algorithm uses a time–independent function Φ already given

by the problem, and the intermediate subsets are adaptively chosen, in a non-optimal manner. Precision is

increased thanks to the use of the g
imp
k and gred

k functions. The total computation time is the same than the

one of splitting algorithm without incorporating importance sampling. I2S algorithm can thus improve the

accuracy of the algorithm without increasing the total computation time. Notice that I2S algorithm is no

longer useful when T is random since the instant when a trajectory enters a new subset does not impact the

probability the trajectory has to reach B. Another avenue for research would be to weight and re-sample

trajectories with respect to the distance from the rare set.

Del Moral and Garnier algorithm In (Del Moral and Garnier 2005), the authors propose a method to

estimate some rare events at a finite horizon time. The probability that they are interested in is P(Φ(Zm)∈F),
for Zk a Markov chain. The following decomposition is used, for any bounded measurable function V :

E(V (Zm)) = E(V (Zm)
m

∏
k=1

G−
k (Zk)

m

∏
k=1

Gk(Zk))
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I2S Standard splitting

N 5000 5000 7500 10000 12500

rSTD 0.36 0.61 0.49 0.47 0.35

time (sec.) 5.55 5.37 8.00 10.66 13.30

Table 1: Convergence of standard splitting.

B P(TB ≤ 1) Opt rSTD
Non-optimal splitting I2S algorithm

estimate time (sec.) estimate time (sec.)

2 3.4.10−4 0.089 2.93.10−4 ±0.10% 2.15 3.00.10−4 ±0.092% 2.12

2.8 1.5.10−7 0.11 1.27.10−7 ±0.20% 3.85 1.25.10−7 ±0.17% 4.02

3.4 9.1.10−11 0.12 6.72.10−11 ±0.37% 5.60 6.94.10−11 ±0.24% 5.68

4 1.3.10−14 0.13 8.64.10−15 ±0.62% 7.50 9.90.10−15 ±0.36% 7.63

Table 2: Comparison of the rSTD given by optimal standard splitting.

where G−
p and Gp are strictly positive function and G−

p Gp = 1. Setting V (Zm) = 1{Φ(Zm) ∈ F}, one obtains

the probability of interest. Since the Gp and G−
p functions are not allowed to be equal to zero, I2S algorithm

is an extension the algorithm of Del Moral and Garnier. It is worth noting that, as expected, the expression

of the variance in theorem (1) is the same than in (Del Moral and Garnier 2005).

6 CONCLUSION AND PERSPECTIVES

We proposed improvements of the splitting algorithm for rare event based on different selection functions,

and on a non-optimal important function. The earlier trajectories reach an intermediate subset, the more

often they are selected. Next, a weighted stage in the algorithm is required to prevent probability bias. The

ap functions can not only depend on the time variable, but also on the space variable. Indeed, one can be

interested in giving more importance to some space regions, setting ap(x, t) depending on space variable

x or space-time variable (x, t). So the algorithm can be understood as a led exploration of the space state

coupling with a rare event estimation. Then, we established a central limit theorem for the estimation of

the rare event probability. For well-known toy cases, a numerical or analytical computation of the variance

given in theorem 1 is possible, provided explicit density of the random vector (XT1
,T1, . . . ,XTm

,Tm) is

established. It could give a better idea on how to choose the optimal functions ap. Numerical experiments

showed variance reductions compared with the standard splitting method. Beyond the pedagogical side of

this paper, a mid-term objective could be to apply this algorithm to the estimation of conflict probability

between aircraft, using models such those developed in (Prandini, Blom, and Bakker 2011).
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JÉRÔME MORIO is a Research Engineer at ONERA since 2007. He graduated from Ecole Nationale

Supérieure de Physique de Marseille, France, in 2004 and obtained a Ph.D. in physics from Aix-Marseille

University, France, in 2007. His main research interests include rare event estimations, sensitivity analysis

and uncertainty propagation. His email address is jerome.morio@onera.fr.

http://doc.utwente.nl/29637/1/t0000013.pdf
mailto://damien.jacquemart@onera.fr
mailto://francois.le_gland@inria.fr
mailto://jerome.morio@onera.fr

	INTRODUCTION
	STANDARD SPLITTING ALGORITHM
	Feynman-Kac Interpretation of the Algorithm
	The Importance Function
	Adaptive Choice of the Thresholds

	A COMBINED IMPORTANCE SPLITTING AND SAMPLING ALGORITHM
	Interpretation of the Algorithm in Term of Feynman-Kac Distributions
	Interacting Path-Particle Interpretation
	Variance Analysis

	NUMERICAL EXPERIMENTS
	COMPARISON WITH EXISTING ALGORITHMS
	CONCLUSION AND PERSPECTIVES

