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Abstract: Model order reduction over a bounded frequency range is more adapted than the
standard H2 approximation whenever the entire frequential behaviour of the large-scale model
is not needed or not accurately known. However most of the methods that enable to reduce a
model on a limited frequency range are based on the use of weights. Yet their determination is
often an issue for engineers. That is why, in this paper, two weight-free model approximation
algorithms are proposed. They are based on recent algorithms that achieve local H2 optimal
model reduction (see Gugercin (2007), Van Dooren et al. (2008) and Gugercin et al. (2008)).
The proposed algorithms efficiency are validated both on a standard benchmark and on an
industrial use case.
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1. INTRODUCTION

1.1 Motivations & contributions

Linear dynamical models are widely used to represent the
behaviour of physical systems or phenomena. Depending
on the required accuracy and on the complexity of the
physical system, the size of the linear model can be-
come large 1 . This is not a theoretical issue, but rather
a practical one since this kind of models require a lot of
resources to be analysed or simulated, and finite precision
arithmetic may disrupt theoretical results. For instance, it
is not possible - or not possible in an acceptable time - to
synthesize a controller with generic tools on a large-scale
model. A traditional way to handle such models consists
in approximating them by smaller ones.
The approximation is performed in order to achieve a given
objective. Usually, it is done such that the reduced-order
model accurately reproduces the frequential behaviour of
the original one on the whole frequency range. However,
in some cases, such a constraint can appear to be too
binding, indeed : (i) some frequencies are physically mean-
ingless and can be viewed as uncertainties, (ii) in practice,
actuators and sensors bandwidth are limited which make
some frequencies irrelevant for control purpose and (iii)
some frequencies are more specifically of interest, e.g. when
vibration control has to be performed. In these cases,
considering the problem of reducing the full-order model
such that a good approximation is found over a bounded
frequency range can be more appropriate and appealing
for engineers.
To this aim, two new algorithms achieving frequency-
limited model approximation are proposed in this paper,

1 In this paper, a model with 1000 to 10000 states is considered as
large, above, it is considered as very-large scale.

namely the Frequency-Limited Iterative SVD-Tangential
Algorithm (FL-ISTIA) and the Frequency-Limited Two-
Sided Iteration Algorithm (FL-TSIA).

1.2 Projection based model reduction framework

Within model reduction approaches, the projection frame-
work is well appropriated. It is grounded on the Petrov-
Galerkin conditions and is recalled in Problem 1.

Problem 1. Given a continuous, stable and strictly proper
MIMO LTI dynamical model Σ, with simple poles, defined
as

Σ :=

{

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t)

(1)

where A ∈ R
n×n, B ∈ R

n×nu and C ∈ R
ny×n, the

projection-based model order reduction problem consists
in finding V,W ∈ R

n×r with WTV = Ir such that the
reduced-order model Σ̂ of order r ≪ n which realisation

is
(

Â, B̂, Ĉ
)

with Â = WTAV , B̂ = WTB and Ĉ =

CV , accurately reproduces the behaviour of the full-order
system Σ.

The accuracy of the reduced-order model can be mea-
sured through several norms depending on the reduction
objective. In this paper the H2-norm and the frequency-
limited H2-norm, denoted H2,ω-norm

2 , are considered.
Two model reduction problems can hence be formulated.
First, the H2 model reduction problem, recalled in Prob-
lem 2, which aims at reproducing on average the behaviour
of a large-scale model for all frequencies.

Problem 2. Considering the setting given in Problem 1,
the projection based H2-norm model reduction problem

2 Its formal definition is given in Section 3.



consists in finding the projectors V,W ∈ R
n×r which

enable to minimize the H2-norm of the error, i.e.

JH2

(

Â, B̂, Ĉ
)

= ‖Σ− Σ̂‖2H2
(2)

for a given reduced order r ≪ n.

Secondly, the H2,ω model approximation problem, recalled
in Problem 3, deals with the approximation of a large-scale
model over a bounded frequency range.

Problem 3. Considering the setting given in Problem 1,
the projection-based frequency-limited model order reduc-
tion problem consists in finding the projectors V,W ∈
R

n×r which enable to minimize theH2,ω-norm of the error,
i.e.

JH2,ω

(

Â, B̂, Ĉ
)

= ‖Σ− Σ̂‖2H2,ω
(3)

for a given reduced order r ≪ n.

1.3 Paper structure & notations

The paper is organised as follows. Section 2 addresses some
well established methods to solve the H2 model reduction
problem. More specifically, three efficient algorithms are
presented. The frequency-limited model reduction prob-
lem is then tackled in Section 3 where frequency-limited
variants of the H2 algorithms are proposed. In Section
4, all the presented model reduction methods are finally
applied on a commonly used benchmark model and on an
industrial aircraft model. Conclusion and comments are
gathered in Section 5.

In this paper, entities with a hat .̂ refers to the reduced
order model, H(s) = C(sI − A)−1B is a transfer matrix,
log (A) is the matrix logarithm of A, A∗ is the conjugate
transpose of A and AT its transpose, Q and P denote
respectively the observability and reachability gramians,
Qω and Pω denote their frequency-limited variants.

2. H2 OPTIMAL MODEL REDUCTION

2.1 Preliminary results

As Problem 2 is not convex, attention has been given
to seek the corresponding first-order necessary optimality
conditions. This has firstly been achieved in Wilson (1974)
using the gramians of the system and in Meier and
Luenberger (1967) using interpolation conditions related
to the transfer functions. In Gugercin et al. (2008), by
linking these conditions to the interpolatory framework
set in Grimme (1997), the authors proposed an algorithm
called Iterative Rational Krylov Algorithm (IRKA) which
enable to find a local minimizer 3 for Problem 2 for
the SISO case. MIMO systems can be handled with the
tangential interpolatory framework introduced in Gallivan
et al. (2004) for which equivalent first-order optimality
conditions have been presented in Van Dooren et al.
(2008).

2.2 Iterative Tangential Interpolation Algorithm

In Van Dooren et al. (2008), an algorithm has been sug-
gested to build V and W such that the reduced-order
3 In practice, the algorithm does not seem to converge towards
saddle points or local extrema.

model fulfils the first-order optimality conditions. Here
it is called Iterative Tangential Interpolation Algorithm
(ITIA). It relies on the construction of two Krylov sub-
spaces which enables to achieve tangential interpolation
of the full-order model at some frequencies. There are the
main properties of the ITIA :

• It can be applied to large-scale models since it only
involves matrices and vector operations.

• It leads to local minimum of the H2-norm model
reduction problem.

• The quality of the approximation can strongly change
depending on the initial shift selection.

• It does not guarantee the stability of the reduced-
order model, even if in practice, instability is rarely
observed.

As shown in Section 2.3, the ITIA can be modified in an
interesting way by using a single gramian.

2.3 Iterative SVD-Tangential Interpolation Algorithm

Model reduction methods based on the Singular Value
Decomposition (among which the balanced truncation)
are numerically expensive due to the computation of two
gramians, but they have some interesting properties like
stability preservation. The Iterative SVD-Tangential In-
terpolation Algorithm (ISTIA) proposed in Poussot-Vassal
(2011) tries to gather the advantages of the moment-
matching methods (IRKA/ITIA) and the SVD-based
methods.
The initial algorithm is the Iterative SVD Rational Krylov
Algorithm (ISRKA) presented in Gugercin (2007). It con-
sists in replacing one of the projectors by a new one built
with one gramian. If the observability gramian Q is used,
then the projector W is defined as :

W = QV (V TQV )−1 (4)

The ISRKA is applicable to SIMO or MISO models
depending on which gramian is used, but for MIMO
models, the tangential interpolation framework must be
used, thus leading to the ISTIA. The ISTIA has different
properties from the ITIA, indeed :

• Using a single gramian guarantees stability preserva-
tion (see Gugercin (2007)).

• It is usually more robust to initial shift point selection
than the ITIA and converges more quickly.

• It fulfils only a subset of the first-order optimality
conditions.

• It requires a gramian and can thus only be used when
the latter is computable.

2.4 Two-Sided Iteration Algorithm

Tangential First-order optimality conditions introduced in
Gallivan et al. (2004) can also be achieved through the
algorithm presented in Xu and Zeng (2011). It is based on
the fact that solving

AX +XΓ +BRT = 0 (5a)

ATY + Y Γ + CTL = 0 (5b)

for X, Y ∈ R
n×r with Γ ∈ R

r×r, L ∈ R
ny×r and

R ∈ R
r×nu , and constructing the reduced-order model

such that :
(

Â, B̂, Ĉ
)

=
(

(XTY )−1XTAY, (XTY )−1XTB,CY
)

(6)



is equivalent to a tangential interpolation of H(s) and

Ĥ(s) at −γi (the eigenvalues of Γ) where the columns of L
(resp. R) are the left (resp. right) tangential directions (see
Gallivan et al. (2004) for more details). With reference to
this algorithm, it it worth noticing that :

• It can be applied on large models, as illustrated in
Benner et al. (2011).

• The TSIA requires good initial projectors W0, V0

to be efficient. For instance the projectors obtained
through another method can be used. In practice it
often enables to enhance the result achieved by the
ITIA or the ISTIA.

3. MAIN RESULTS : H2,ω ORIENTED MODEL
REDUCTION

3.1 Preliminary results

A widely used approach to tackle the issue of model reduc-
tion over a bounded frequency range consists in applying
input and/or output filters to the full-order model and
to reduce it. Despite interesting results, see for instance
Gugercin and Antoulas (2004), Beattie and Gugercin
(2011) and Anic et al. (2012), weights determination can
still be a time consuming and challenging task for engi-
neers. That is why weight-free approaches are preferred
here. They are mainly based on the frequency-limited
gramians presented in Gawronski and Juang (1990) and
recalled in Definition 1.

Definition 1. Given the realisation (A,B,C) of a strictly
proper and stable MIMO LTI dynamical system, the
frequency-limited reachability and observability gramians
noted Pω and Qω, respectively, are given by :

Pω =
1

2π

∫ ω

−ω

T (ν)BBTT ∗(ν)dν (7a)

Qω =
1

2π

∫ ω

−ω

T ∗(ν)CTCT (ν)dν (7b)

with T (ν) = (jνIn −A)
−1

.

These gramians are solutions of the two following Lya-
punov equations :

APω + PωA
T +Wc(ω) = 0 (8a)

ATQω +QωA+Wo(ω) = 0 (8b)

where

Wc(ω) = S(ω)BBT +BBTS∗(ω) (9a)

Wo(ω) = S∗(ω)CTC + CTCS(ω) (9b)

and

S(ω) =
j

2π
log

(

(A+ jωIn)(A− jωIn)
−1

)

(10)

These gramians can be used to express the restriction of
the H2-norm on the frequency range [0, ω], see Definition
2. This expression has been proposed in Anderson et al.
(1991) and has recently been used in Masi et al. (2010).

Definition 2. Given a stable and strictly proper MIMO
linear dynamical system Σ with H(s) = C(sIn − A)−1B,
the H2,ω-norm is defined as follow

‖H(s)‖2H2,ω
=

1

2π

∫ ω

−ω

trace
(

H(jν)H(−jν)T
)

dν

= trace
(

CPωC
T
)

= trace
(

BTQωB
)

(11)

where Pω and Qω are the frequency-limited gramians.

Remark 1. The frequency-limited gramians can easily
be expressed on the frequency interval [ω1, ω2], indeed
Q[ω1,ω2] = Qω2

− Qω1
and P[ω1,ω2] = Pω2

− Pω1
. Hence

a restriction of the H2-norm on [ω1, ω2] can be formulated
as well. In this article, only the interval [0, ω] is considered
though.

The frequency-limited gramians can be directly used for
model reduction through the Frequency-Limited Balanced
Truncation, noted FL-BT. This method has been pro-
posed in Gawronski and Juang (1990). It consists in using
frequency-limited gramians instead of classical ones to per-
form a balanced truncation (see Antoulas (2005) for more
details). The properties of this method are summarized
thereafter :

• As shown in Gugercin and Antoulas (2004), using this
approach is equivalent to apply a frequency-weighted
balanced truncation with perfect filters. And indeed,
the method is efficient in practice.

• Unlike the balanced truncation, it does not guarantee
the stability of the reduced-order model.

• Computing the frequency-limited gramians require
to solve two large-scale Lyapunov equations and to
evaluate the logarithm of a large-scale matrix. This
makes the frequency-limited balanced truncation nu-
merically more complex to achieve than the basic
balanced truncation.

Remark 2. First-order optimality conditions have recently
been derived from the state-space formulation of the H2,ω-
norm in Petersson and Löfberg (2012). They have not the
form of interpolation conditions but they can still be used
with standard optimization techniques.

3.2 Frequency Limited ISTIA

The frequency-limited gramians are implicitly playing the
role of filters in the frequency-limited balanced truncation.
In a similar way, using one frequency-limited gramian
in the ISTIA instead of one infinite gramian makes the
algorithm more efficient in terms of H2,ω-norm. This effect
can be accentuated by choosing the initial interpolation
points so that their modulus belay to the concerned
frequency interval. The Frequency-Limited ISTIA (FL-
ISTIA) is presented in Algorithm 1. The FL-ISTIA has
the following properties :

• It leads to good results in terms ofH2,ω-norm.
• It is numerically more robust than the FL-BT when
reducing an ill-conditioned model.

• As for the FL-BT, the stability on the reduced-order
model is no longer guaranteed. However in practice,
instability has only be observed for some very specific
frequency intervals.

• It is not based on optimality considerations.



Algorithm 1 Frequency-Limited Iterative SVD-
Tangential Interpolation Algorithm (FL-ISTIA)

Require: A ∈ Rn×n, B ∈ Rn×nu , C ∈ Rny×n, R ∈ R+∗,

{σ
(0)
1 , . . . , σ

(0)
r } ∈ Cn×r with |σ

(0)
i
| ≤ R, i = 1, . . . , r,

{b̂1, . . . , b̂r} ∈ Cn×r, ε > 0
1: Construct,

V =

[

(σ
(0)
1 In −A)−1Bb̂1, . . . , (σ

(0)
r In −A)−1Bb̂r

]

2: Solve QωA+ATQω +Wo(ω) = 0 in Qω

3: Compute W = QωV (V TQωV )−1

4: while |σ(i) − σ(i−1)| > ε do

5: i← i+ 1, Â = WTAV , B̂ = WTB

6: Compute ÂX = diag(λ(Â))X

7: Compute
[

b̂1, . . . , b̂r
]

= B̂TX−T

8: Set σ(i) = −λ(Â)
9: Construct,

V =

[

(σ
(i)
1 In −A)−1Bb̂1, . . . , (σ

(i)
r In −A)−1Bb̂r

]

10: Compute W = QωV (V TQωV )−1

11: end while

12: Construct Σ̂ : (WTAV,WTB,CV )

Ensure: V,W ∈ Rn×r, WTV = Ir and Re

(

λ(Â)

)

< 0

3.3 Frequency Limited TSIA

By writing the H2,ω-norm of the error of approximation, it
appears that Sylvester equations appears in a similar way
as in the H2 problem Xu and Zeng (2011). Indeed,

JH2,ω
= ‖H(s)‖2H2,ω

− trace
(

2CXωĈ
T
)

+ ‖Ĥ(s)‖2H2,ω

= ‖H(s)‖2H2,ω
+ trace

(

2BTYωB̂
)

+ ‖Ĥ(s)‖2H2,ω

(12)
where Xω and Yω are the solutions of the following
Sylvester equations :

AXω +XωÂ
T + S(ω)BB̂T +BB̂T Ŝ∗(ω) = 0(13a)

ATYω + YωÂ−
(

S∗(ω)CT Ĉ + CT ĈŜ(ω)
)

= 0(13b)

where S(ω) and Ŝ(ω) are given by equation (10) with

the matrices A and Â, respectively. Using these Sylvester
equations (see Algorithm 2) instead of those used in the
H2 case in Xu and Zeng (2011) enables to improve the
efficiency of the algorithm in terms of H2,ω-norm.
As for the TSIA, this algorithm requires good initial
projectors, for instance, the projectors givent by the ISTIA
can be used. This algorithm comes from an experimental
approach and has no theoretical basis yet, but in practice
it can substantially decrease the H2,ω-norm of the error
obtained with other methods.

4. APPLICATION

The reduction methods presented above are compared
on two models : (i) the clamped beam model, a SISO
model with 348 states which can be found in Leibfritz and
Lipinski (2003) and (ii) an industrial aircraft model with
289 states, 3 inputs and 4 outputs. The aircraft model is
very ill-conditioned and thus quite tricky to reduce. The
criterion considered to compare the methods is the relative
error, i.e. :

J̃Hi
=

‖Σ− Σ̂‖Hi

‖Σ‖Hi

(14)

Algorithm 2 Frequency-Limited Two Sided Iteration
Algorithm (FL-TSIA)

Require: A ∈ R
n×n, B ∈ R

n×nu , C ∈ R
ny×n, N ∈ N

∗,
r ∈ N

∗ and W0, V0 ∈ R
n×r such that WT

0 V0 = Ir
1: Compute Â0 = WT

0 AV0, B̂0 = WT
0 B and Ĉ0 = CV0

2: Set k = 0
3: while k ≤ N − 1 do
4: Compute Xk and Yk by solving the following

Sylvester equations :

AXω +XωÂ
T + S(ω)BB̂T +BB̂T Ŝ∗(ω) = 0

ATYω + YωÂ−
(

S∗(ω)CT Ĉ + CT ĈŜ(ω)
)

= 0

5: Compute Wk+1 = Yk(X
T
k Yk)

−1 and Vk+1 = Xk

6: Compute Âk+1 = WT
k+1AVk+1, B̂k+1 = WT

k+1B and

Ĉk+1 = CVk+1

7: Set k = k + 1
8: end while
9: Set Σ̂ : (ÂN , B̂N , ĈN )
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Fig. 1. Reduction of the clamped beam model for several
approximation orders r

where Hi is the H2-norm in Section 4.1 and the H2,ω-norm
in Section 4.2.

4.1 H2 model reduction methods

Each model is reduced for different order by the balanced
truncation (noted BT and obtained with Matlab R©’s reduc-
tion tool), the ITIA, the ISTIA and the TSIA (initialized
by the ITIA or the ISTIA). Results are presented on Figure
1 for the clamped beam model and on Figure 2 for the
aircraft model.

With reference to Figure 1, it can first be noticed that
methods which enable to satisfy the first-order optimality
conditions (or a subset of them) are better than those
which do not, like the BT. However the ITIA is not
necessarily better than the ISTIA whereas it satisfies
all the optimality conditions. This can be explained by
an early convergence towards a local minimum which is
related to the choice of stopping criteria. The effect of the
TSIA can only be seen when the result of ISTIA is given
as initialization, indeed, it does not affect the results of
the ITIA.
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Fig. 2. Reduction of the aircraft model for several approx-
imation orders r

Differences between the reduction methods appear more
clearly on Figure 2. Here the BT leads to a stable reduced-
order model in only a few cases (r = 14, 16 or 20). This
comes from the ill-conditioning of the matrix A which
prevent from finding a good solution to the Lyapunov
equations, indeed, ‖AP + PAT + BBT ‖2 > 103 in some
cases. It also seems that the conditioning have a negative
impact on the ITIA which gives a bad approximation
compared to the ISTIA. This can be explained by the fact
that linear systems that have to be solved in the ITIA have
not been preconditioned here. Yet it enables to illustrate
the benefit of the TSIA which drastically decreases the
error of the model obtained through the ITIA for some
orders r. The effect is less obvious on the ISTIA but is
still there.

4.2 H2,ω oriented model reduction methods

Here, each model is reduced on [0, ω] to a fixed order r = 12
by the FL-BT, the ISTIA, the TSIA (initialized by the
ISTIA), the FL-ISTIA and the FL-TSIA (initialized by the
ISTIA). The reduction is done for several ω : from 2rad/s
to 20rad/s for the clamped beam model and from 3rad/s
to 40rad/s for the aircraft model. Results are presented on
Figures 3 and 4. Note that the FL-BT has not been printed
for the aircraft model since it fails to reduce it properly
and leads to a large error.

The FL-ISTIA and the FL-TSIA are more efficient in
term of H2,ω-norm than the ISTIA and the TSIA. Indeed,
from 2rad/s to 14rad/s for the clamped beam model and
from 1rad/s to 19rad/s for the aircraft model, the relative
H2,ω error is clearly smaller for the frequency-limited ap-
proaches. The FL-BT is also better than the ISTIA and the
TSIA for the clamped beam model except from 4rad/s to
8rad/s where numerical issues might have appeared. Note
also that, similarly to the H2 case, the FL-TSIA enables
to improve the results given by the ISTIA and leads to the
best frequency-limited approximation among the tested
methods. All the frequency-limited methods quickly con-
verge towards their non frequency-limited versions which
was expected since : (i) the frequency-limited gramians
converge towards the classical gramians and (ii) the last
terms in the Sylvester equations (13a) and (13b) converge

towards BB̂T and CT Ĉ, which makes the Sylvester equa-
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Fig. 3. Frequency-limited reduction of the clamped beam
model (r = 12) for varying ω
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Fig. 4. Frequency-limited reduction of the aircraft model
(r = 12) for varying ω

tions equivalent to those appearing in the TSIA (Xu and
Zeng (2011)).

5. CONCLUSION

In this paper, new approaches to achieve numerically
robust and stable frequency-limited model order reduc-
tion through weight-free algorithms have been proposed,
namely the Frequency-Limited ISTIA and the Frequency-
Limited TSIA. The theoretical background is still under
investigation, but in practice, it is clear that these methods
lead to good approximation in terms ofH2,ω-norm. In fact,
the approximations are at least as good as those obtained
with the FL-BT, the other well known weight-free method.
The FL-ISTIA requires to solve a Lyapunov equation and
is thus dedicated to medium-scale models whereas the
FL-TSIA, provided it has been well initialised, can be
successfully applied to larger models. The FL-ISTIA and
the FL-TSIA will be available soon in the MORE Toolbox
(see Poussot-Vassal and Vuillemin (2012)).
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