Skip to Main content Skip to Navigation
Journal articles

Iterated local search with partition crossover for computational protein design

Abstract : Structure-based computational protein design (CPD) refers to the problem of finding a sequence of amino acids which folds into a specific desired protein structure, and possibly fulfills some targeted biochemical properties. Recent studies point out the particularly rugged CPD energy landscape, suggesting that local search optimization methods should be designed and tuned to easily escape local minima attraction basins. In this article, we analyze the performance and search dynamics of an iterated local search (ILS) algorithm enhanced with partition crossover. Our algorithm, PILS, quickly finds local minima and escapes their basins of attraction by solution perturbation. Additionally, the partition crossover operator exploits the structure of the residue interaction graph in order to efficiently mix solutions and find new unexplored basins. Our results on a benchmark of 30 proteins of various topology and size show that PILS consistently finds lower energy solutions compared to Rosetta fixbb and a classic ILS, and that the corresponding sequences are mostly closer to the native.
Complete list of metadata

https://hal.archives-ouvertes.fr/hal-03298736
Contributor : Thomas Schiex <>
Submitted on : Friday, July 23, 2021 - 9:01:05 PM
Last modification on : Wednesday, September 1, 2021 - 3:29:26 AM

File

PILS__proteins_journal.pdf
Files produced by the author(s)

Licence


Distributed under a Creative Commons Attribution 4.0 International License

Identifiers

Citation

François Beuvin, Simon De Givry, Thomas Schiex, Sébastien Verel, David Simoncini. Iterated local search with partition crossover for computational protein design. Proteins - Structure, Function and Bioinformatics, Wiley, In press, ⟨10.1002/prot.26174⟩. ⟨hal-03298736⟩

Share

Metrics

Record views

32

Files downloads

70