
HAL Id: hal-01256000
https://hal.science/hal-01256000

Submitted on 14 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Predictable composition of memory accesses on
many-core processors

Quentin Perret, Pascal Maurère, Éric Noulard, Claire Pagetti, Pascal Sainrat,
Benoît Triquet

To cite this version:
Quentin Perret, Pascal Maurère, Éric Noulard, Claire Pagetti, Pascal Sainrat, et al.. Predictable
composition of memory accesses on many-core processors. 8th European Congress on Embedded Real
Time Software and Systems (ERTS 2016), Jan 2016, TOULOUSE, France. �hal-01256000�

https://hal.science/hal-01256000
https://hal.archives-ouvertes.fr


Predictable composition of memory accesses on

many-core processors

Quentin Perret∗†, Pascal Maurère∗, Éric Noulard†, Claire Pagetti†, Pascal Sainrat‡, Benoı̂t Triquet∗

∗Airbus Operations SAS, Toulouse, France. firstname.lastname@airbus.com
†ONERA, Toulouse, France. firstname.lastname@onera.fr

‡University of Toulouse, France. sainrat@irit.fr

Abstract—The use of many-core COTS processors in safety
critical embedded systems is a challenging research topic. The
predictable execution of several applications on those processors
is not possible without a precise analysis and mitigation of the
possible sources of interference. In this paper, we identify the
external DDR-SDRAM and the Network on Chip to be the
main bottlenecks for both average performance and predictability
in such platforms. As DDR-SDRAM memories are intrinsically
stateful, the naive calculation of the Worst-Case Execution Times
(WCETs) of tasks involves a significantly pessimistic upper-
bounding of the memory access latencies. Moreover, the worst-
case end-to-end delays of wormhole switched networks cannot
be bounded without strong assumptions on the system model
because of the possibility of deadlock. We provide an analysis of
each potential source of interference and we give recommenda-
tions in order to build viable execution models enabling efficient
composable computation of worst-case end-to-end memory access
latencies compared to the naive worst-case-everywhere approach.

Keywords—many-core processor, real-time, composition rules,
execution model, DDR-SDRAM, Network on Chip

I. INTRODUCTION

The increasing complexity of modern COTS processors

and especially the change of architectural paradigm coming

with the emergence of many-core processors involve new

challenges to bound the worst-case execution time of real-

time applications. Indeed, many-core processors aim at solving

the scalability issue of multi-core processors by changing

the inter-core communications methods from implicit shared-

memory mechanisms to explicit point-to-point communica-

tions through one or several Network on Chip (or NoC) and

by allocating private on-die memory areas to each core or

group of cores. In the frame of real-time systems, this new

architectural paradigm also brings new challenging research

topics.

The important multiplication of cores implies that the ex-

ternal memory will also be shared much more. Moreover,

a transaction with the external memory initiated by a core

will now have to go through a NoC, implying new potential

sources of interferences. Thus, the problem of bounding the

execution time of applications, and especially, the subsequent

problem of bounding the memory access latencies will become

increasingly hard. Moreover, the utilization of many-core

processors to execute several safety critical applications will

only be possible in the industry if the requirements related

to incremental certification can be met. Such requirements

include the need of composability to ensure decoupled cer-

tification processes of the applications.

In this paper, we propose to identify each shared resource

on the memory access path and to build a composition rule

describing its behaviour in the case of concurrent accesses. We

show that a worst-case-everywhere approach is not viable as

it implies a potentially large under-utilization of the resources

due to pessimism in the calculation. The latencies of the

NoC and the DDR-SDRAM appear to be particularly difficult

or even impossible to bound tightly without assumptions on

the potential competitors. So, we give recommendations for

building viable execution models (ie. a set of restricting rules

that must be met by the applications) in order to ease the tight

calculation of Worst-Case Execution Times (or WCETs) with

minimal assumptions on the behaviour of the applications.

The rest of the paper is organized as follows. Section II

provides the description of the many-core platform we will

consider. We identify in Section III each potential interference

source on the memory transactions paths and we define all

their composition rules. Section IV discusses the required

background knowledge on DRAM and classical memory arbi-

tration techniques. We evaluate the end-to-end latency a mem-

ory transaction in Section V and we provide recommendations

for execution model design in Section VI. Related work is

addressed in Section VII and Section VIII concludes the paper.

II. PLATFORM DESCRIPTION

Our platform model assumes a Commercial-Off-The-Shelf

(or COTS) many-core processor (as shown in figure 1) orga-

nized in tiles of two different categories:

• The Compute Tiles have for main purpose to execute user

code. They are composed of N c
c (usually ≥ 1) computing

cores, local memory (usually SRAM) shared by all cores

inside the tile and N c
dma (usually = 1 in Compute Tiles)

Direct Memory Access (or DMA) devices to enable inter-

tile communication through a Network-on-Chip.

• The I/O tiles are used for communication with out-of-

chip components such as DDR3-SDRAM. They include

N io
c (usually ≥ 1) computing cores, N io

dma (usually ≥ 1)

DMAs and N io
phy physical interfaces linked with out-of-

chip components.

The tiles communicate through a Network-on-Chip (or

NoC) based upon a packet-switching strategy (e.g. wormhole

switching or store and forward). This implies that large

1



Bank 4

Bank 3

Bank 2

Bank 1

Bank 4

Bank 3

Bank 2

Bank 1

Internal SRAM

Internal SRAM

T
ile

B
T

ile
A

Core 3

Core 2

Core 1

DMA

Core 3

Core 2

Core 1

DMA

NoC

DMA 1

Core 2

Core 1

DMA 2DDR Controller

DDR SDRAM

IO Tile
B

an
k

1

B
an

k
2

B
an

k
3

B
an

k
4

B
an

k
5

B
an

k
6

B
an

k
7

B
an

k
8

Arbiter

NoC Router

Process step

Queue

Write process

Read process

Fig. 1: Model of a many-core processor with memory accesses from computing tiles

communications over the NoC are split into packets composed

of several flow control digits (or flits). In the following sections

we will refer to a series of packets composing a single memory

transaction as a flow. In this architecture, Compute Tiles are

not able to issue commands directly to external RAM. The

only way for Compute Tiles to interact with the main memory

is to use the IO tiles as an interface to which every request

must be sent explicitely by software. We explain the processes

of reads and writes from/to the external memory with two

examples.

Example 1 (Write process): In this example, the Core 3 of

Tile B requires to write data in the bank 4 of the external

DDR3-SDRAM memory. We detail each step of this write

process as shown in figure 1 (the numbering is equivalent

to the one of the path of the write process in figure 1):

1) The requesting computing core (Core 3 of Tile B) writes

the data to be sent in the local memory of the computing

tile. As the banks of the local SRAM are shared among

many potential requestors, there may be an arbitration at

this level in the case of concurrent accesses to the bank.

2) The Core signals to the local DMA its itention to send

the data.

3) DMA reads the data (written by Core 3 at step 1) from

the local memory. Once again, any concurrent access to

the same bank will involve an arbitration.

4) DMA sends the data through the NoC. If the amount

of data to send is important, it will be split in several

packets constituing a flow. All the packets will cross the

NoC following the same path. If one or several parts

of this NoC path are shared with other NoC flows, the

arbitration between the flows will occur at packet level.

5) The sink DMA (DMA 2 of IO Tile) receives the packets

and initiates DDR3-SDRAM write transactions. If other

masters (IO Tile Cores, other IO Tile DMAs, . . . ) access

the external memory concurrently, an arbitration process

will occur. This phase assumes that the sink DMA has

been configured before reception to associate one of its

reception queues to a specific DDR3-SDRAM address (an

address in bank 4 of the DDR3-SDRAM here).

6) Once the sink DMA write(s) request(s) is/are elected

by the memory arbiter, data is written into the DDR3-

SDRAM array.

Example 2 (Read process): In this example, the Core 2 of

Tile A needs to read data from the bank 2 of the DDR-SDRAM

to store it in the bank 1 of its local memory. We detail each

step of this read process as shown in figure 1 (the numbering

is equivalent to the one of the path of the write process in

figure 1):

a) The DMA of the IO Tile initiates a DDR3-SDRAM read

transaction. Once again, any concurrent access to the

memory with any other master will involve arbitration.

b) Once the DMA command is elected, data is transfered

from DDR3-SDRAM to the DMA.

c) DMA sends packets through the NoC. Again, important

amounts of data are packetized and arbitrated with con-

current flows at packet level.

d) DMA of the Compute Tile receives the packets and

attempts to write them back into the local memory. Again,

we assume that this DMA has been pre-configured to

associate one of its reception queue to a specific memory

area of the local memory (the bank 1 in this example).

2



We remark that a read process is fairly equivalent to a write

process. Indeed, a read by a computing core is equivalent to a

write from an IO Tile. The difference is that the destination of

the data is not the external memory but the internal memory

of a Compute Tile.

In this example, the phase a) of the read process is initiated

by the DMA of the IO Tile. We assume that the DMA was

notified by one of the IO Tile’s core that received a command

from one compute tile or that has been pre-configured.

This model is representative of a certain class of tiled many-

core processors such as the KALRAY MPPA
R©-256 [1]. In the

next sections, we try to estimate the temporal bounds of any

individual access on the identified sources of interference with

no assumption on the behaviour of other potential requesters.

III. SOURCES OF INTERFERENCE

In this section, we will refer as a memory transaction to the

high-level application demands of memory. Each transaction

can be composed of several memory requests at external

memory controller level.

Definition 1 (Worst-Case-Everywhere Approach): We denote

as a Worst-Case-Everywhere Approach a method for bounding

the memory access time of an individual requester with no

assumptions on the competitors on each shared resource. In

this context, one must consider only the worst-case behaviour

of the competitors to provide a safe bound.

A. Local memory arbitration

For simplification purpose, the local memory of the Com-

pute Tiles is assumed to be Static Random Access Memory

(or SRAM) for which there is a simple access protocol and

no refresh is required. The local memory of each computing

tile is split into N c
bank banks. The memory frequency is f c

mem

and the data bus is wc
mem bytes large. There are N c

c +N c
dma

potential memory requesters in a compute tile. We assume

each requester to own a private access path to the memory.

Concurrent accesses to different banks have no impact on

bandwidth. Concurrent accesses to a single bank are arbitrated

with a Round-Robin policy. So, for a memory transaction of

strans bytes, the total duration is:

tSRAM (Nreq, strans) =

⌈
strans
wc

mem

⌉

×
Nreq

f c
mem

(1)

In a worst-case-everywhere approach, one must always

consider Nreq = Nmax
req = N c

c + N c
dma. So, we can estimate

the worst case latency of a local memory transaction by

tmax
trans = tSRAM (Nmax

req , strans).

B. Network on Chip

In this section, we assume a NoC designed upon a wormhole

switching strategy. The access to the NoC is enforced by the

DMA. Communications upon the NoC are split into packets

having a maximum size of smax
pk flits of payload where the

size of one flit is sflit bytes. The number of non-payload

flits by packet is sheader. The maximum frequency at which

flits can transit on the NoC is fNoC . We show in figure 2 the

model of a NoC router. A router Ri is composed five interfaces

named East, West, North, South and Local. The Local interface

is not represented in figure 2 for clarity. The arbiter at each

interface implements a Round Robin policy at packet level.

The arbiters are work conserving, meaning they are never idle

when there is a packet to send. Consequently, they do not

introduce undesired gaps between packets.

West
East

South

North

Fig. 2: Model of a NoC router

In wormhole switched networks, one message can be hold-

ing one resource while requesting others, and thus, cause a

deadlock [2]. We show an example of deadlock in figure 3.

F (R4)

F (R4)

F (R4)

F (R4)

F (R2)

F (R2)

F (R2)

F (R2)

F
(
R

1
)

F
(
R

1
)

F
(
R

1
)

F
(
R

1
)

F
(
R

3
)

F
(
R

3
)

F
(
R

3
)

F
(
R

3
)

R2

R3 R4

R1

Fig. 3: Deadlock on a wormhole routed NoC

In this example we can see the flits F (Rx) of 4 packets in

the FIFO queues of the interfaces of 4 routers. 3 out of 4 flits

F (R1) at destination of the router R1 went through the router

R3 and are stored in one queue of the router R4 waiting for

availability of the link to R1. Because of the back-pressure

mechanism, the fourth F (R1) flit is still queueing in R3 as

the queue of R4 is full. It is also maintaining occupied the

3



link between R3 and R4 as all the flits of one packet must

be consecutive. At the same time, the flits F (R2) blocking

the flits F (R1) are waiting for the link between R1 and

R2 to become idle. Similarly, the flits F (R3) occupying this

link are waiting for the link between R2 and R3 to become

idle but this link is occupied by the F (R4) flits themselves

waiting for the R3 to R4 link that is occupied by the F (R1)
flits. We can see clearly here the occurrence of an unsolvable

cyclic dependency leading to a deadlock. Such a problem

can happen if no assumptions are made on the software

accessing the NoC. So, a worst-case everywhere approach is

not applicable. In the literature, the attempts to bound the end-

to-end delays of wormhole switched networks usually assume

specific routing algorithms [3] or acyclic Channel Dependency

Graphs [2] or regulation of traffic injection to ensure deadlock-

free executions. For example, in [4], the authors present

an approach ensuring no overflow of the KALRAY MPPA
R©-

256’s NoC routers FIFOs using the hardware limiters properly

configured with Network Calculus [5]. Thanks to the design of

the NoC routers and the FIFO overflow avoidance, no deadlock

can happen. However, in this case, the effective latency of any

NoC packet depends on the contribution of other participant

and thus does not provide composability (even if the maximum

end-to-end latency can indeed be bounded). An other possible

approach that offers composability is to compute an off-line

TDMA scheduling of the NoC in order to provide periodic

time windows to each task during which they access the NoC

with no concurrents [6]. We argue anyway that static hardware-

based routing policy offers less flexibility than explicit routing

decided by software (at the cost of an overhead implied

by the route planning obviously). This flexibility enables to

choose complex routes that may help the system designers to

avoid route conflicts when trying to compute efficient TDMA

scheduling tables or to build acyclic Channel Dependency

Graphs.

C. Main memory access

We consider a DDR3-SDRAM memory as defined by the

JEDEC standard [7]. As shown in figure 1, we assume that

concurrent accesses to the memory are arbitrated before being

issued to the controller. So, the problem of bounding the

memory latencies can be divided into two subproblems:

1) what is the policy used by the controller to serialize

several parallel accesses ?

2) how does the memory react to a certain sequence of

requests ?

As the detailed explanation of both problems comes with

prerequisites, we discuss them in section IV-C after an intro-

duction on DRAM technology.

IV. DRAM BACKGROUND

We present the basics of DRAM in order to explain the

inherent timing constraints related to this technology and we

address the problem of concurrent memory accesses. More

detailed information about DRAM are available in [8].

A. DRAM technology

The Dynamic Random Access Memory (DRAM) is a

simple, cheap and compact type of memory widely used in

modern computers. A DRAM device is usually composed of

several DRAM banks. A bank is an independent array of

DRAM cells where each cell stores 1 bit of data. A cell is

composed of a capacitor and a transistor able to connect the

storage capacitor to the sense amplifiers of the bank. The sense

amplifiers are acting as an interface between the cells rows

and the memory controller. The sense amplifiers of one bank

can be connected to only one row at a time. We will refer to

the currently connected row as the active row or the opened

row. Any column access command (ie. read or write) must be

issued to the opened row. To issue requests on closed rows,

the opened row must be precharged (or closed) first so that

the according row can be activated.

B. Bank commands

We identify five main bank commands (ACT , PRE, RD,

WR, REF ). We detail each of them in the following sections.

1) Row activate: The purpose of a Row Activate command

(or ACT ) is to connect one row in the bank to the sense

amplifiers. The important timing parameters related to the

ACT command are:

• tRCD: Row to Column Delay. The time the memory

controller must wait after the ACT before it can issue

a Column Read or Write command.

• tRAS : Row Access Strobe. Minimum time a row must

remain opened before the next precharge.

• tRRD: Row activate to Row activate Delay. Minimum

time required between two ACT commands.

• tFAW : Four row Activation Window. Sliding window

during which no more than 4 ACT commands can be

issued.

2) Read: A Column Read command (or RD) is issued on

an opened row in order to transfer data from the DRAM array

to the memory controller. In modern DDR3-SDRAM, data is

moved in relatively small bursts. We note the size in bytes

of one burst sburst. The important timings related to the RD
command are:

• tCAS : Column Access Strobe. Duration required by the

memory to place on the data bus the requested data. This

parameter is also often noted tCL.

• tburst: The time (in cycles) required to transfer a complete

burst. If the memory data bus is wbus bytes large, a

complete burst will be transfered in sburst/wbus beats

of data. In DDR3-SDRAM systems, the double data rate

mechanism allows to transfer two beats of data by cycle.

So, tburst = sburst/(2× wbus) cycles.

3) Write: A Column Write command (or WR) is issued on

an opened row in order to transfer data bursts from the memory

controller to the DRAM array. The important timings related

to the WR command are:

• tburst: Same as RD bursts.

4



• tCWD: Column Write Delay. Delay between the WR
command and the placement of data on the bus.

• tWTR: Write To Read delay. Minimum time between a

WR and a RD command. This constraint is related to

the bus switching time. tWTR is not local to a bank but

a global device constraint.

• tWR: Write Recovery delay. Minimum amount of time to

wait after a column write command before a precharge

command can be issued.

4) Precharge: A precharge command (or PRE) has for

main purpose to disconnect the current row. The important

timings related to the PRE command are:

• tRP : Row Precharge delay. The time required to discon-

nect the opened row from the sense amplifiers.

• tRC : Row Cycle. tRC = tRAS+tRP is a commonly used

indicator for DDR3-SDRAM performance.

5) Refresh: Refresh commands must be issued periodically

to all the DRAM rows in order to avoid data corruption. We

assume that the memory controller uses a simple Auto-refresh

policy. In this case, a REF command operates in parallel in

all banks and refreshes one or several rows in each bank. The

important timings related to the REF command are:

• tREFI : Refresh interval. Time interval between two

REF commands issued by the controller.

• tRFC : Refresh Cycle. Duration of one refresh cycle.

To safely upper-bound the latency of a sequence of memory

access, the penalties related to the REF commands must be

taken into account. In [9], the authors provide a method to

take calculate these penalties with equation 2.

trefseq = tseq +

⌈
taccess

tREFI − tRFC

⌉

× tRFC (2)

Where tseq is the latency of the sequence of memory

accesses calculated without taking into account refreshes.⌈
tseq

tREFI−tRFC

⌉

gives the maximum number of refreshes that

may occur during tseq . Therefore, the refresh cycle time tRFC

is added to tseq as many time as it is possible in the worst case.

As the refresh-related penalties can be calculated separately

from the calculation of tseq using equation 2, we do not take

them into account in the rest of the paper.

In order to give to the reader the order of magnitude of

each previously enumerated timing parameter, we provide in

table I the values extracted from the technical documentation

of a Micron DDR3L SDRAM module [10] composed of 8

banks of 512MiB each.

C. Concurrent accesses

In order to analyse the memory behaviour when accessed

by several competitors, we decompose the analysis in two

steps. At first, we examine the response of a memory bank

to a specific sequence of commands and then we identity the

arbitration mechanisms between the competitors.

Parameter Nanoseconds Cycles Data beats

tCK 1.25 1 2
tBURST 5 4 8
tCAS 13.75 11 22
tRP 13.75 11 22
tRCD 13.75 11 22
tWR 21.25 17 34
tWTR 7.5 6 12
tRAS 35 28 56
tRC 48.75 39 78
tFAW 30 24 48
tRRD 6.25 5 10
tCWD 10 8 16
tRFC 260 208 416
tREFI 3906 3125 6250

TABLE I: Timing parameters of Micron module [10]

Prev. cmd. Cur. cmd Timing parameter

RD RD tburst
RD WR tCWD + tburst
RD PRE tRC − tmax

read
WR RD tCAS + tburst + tWTR

WR WR tburst
WR PRE max(tWR, tRAS − tmax

write) + tRP

ACT RD tCAS + tburst
ACT WR tCWD + tburst
ACT PRE tRC

X ACT tRCD

TABLE II: Visible timings of commands at bank level

1) Bank level: At bank level, we can see as input a series

of low level commands (ACT , PRE, RD, WR) on one

bank and as output the resulting time required to complete

the whole sequence of commands. We detail in table II the

visible timing of each command depending on the previous

command issued to the same bank. So, the time needed by

one command sequence can be calculated by summing the

parameters of table II corresponding to each command.

Example 3 (Calculation of the duration of 4 commands

sequence on one bank): As shown in figure 4, we consider

a sequence of four commands (one ACT followed by 3 RD).

The three first commands are issued back to back and the last

one is issued after a gap of 3 cycles. With the parameters of

table I and the expressions of table II we calculate the time

required to complete the whole sequence tseq = 37 cycles

with:

tseq = tRCD
︸ ︷︷ ︸

ACT

+ tCAS + tBURST
︸ ︷︷ ︸

1st RD

+ tBURST
︸ ︷︷ ︸

2nd RD

+ tBURST
︸ ︷︷ ︸

3rd RD

+tGAP

2) Controller level: The arbitration strategy implemented

in order to serialize several concurrent memory transactions

varies from one controller to another. One of the most widely

used arbitration policy in COTS controllers is the First-

Ready First-Come First-Serve (or FR-FCFS). With FR-FCFS,

requests on already opened DRAM rows are issued first, and

once no pending request targets an opened row, the oldest

request goes first. Bounding the memory access time of a FR-

FCFS-based controller can be challenging since an aggressive

implementation of this arbitration policy can imply starvation

as new requests are likely to be issued before older ones.

5



tseq

ACT RD RD RD

tGAP
tRCD

tCAS tBST

tCAS tBST

tCAS tBST

tGAP

Fig. 4: Sequence issued to a bank with tBST = tBURST

The real implementation of the FR-FCFS policy often

slightly differ from one COTS controller to another. For

instance, the differences can be related to RD and WR
grouping, to starvation avoidance (some controllers have a

cap [11] for example) or to the impact of DRAM refreshes

on priorities. For this reason, the accurate modeling of the

arbitration policy of COTS controllers is target dependent. In

the following section, we propose an example of modeling

with the KALRAY MPPA
R©-256’s arbiter in order to quantify

its worst-case memory access time. Based on this, we will

provide recommendations (that can still reasonably be applied

on different COTS controllers since they do not require target-

specific configurations) to reduce the pessimism implied by the

worst-case-everywhere approach at the controller level.

Master 1

Master 2

Master 3

Master 4

M
P

F
E

Reorder Core

C
o
n
tr

o
ll

er

Arbiter

Fig. 5: KALRAY MPPA
R©-256’s arbiter

3) KALRAY MPPA
R©-256’s arbitration policy: As shown

in figure 5, the KALRAY MPPA
R©-256’s memory arbiter is

composed of two elements. The Multi port front end (or

MPFE) has several ports, each of which is connected to

one master (DMAs Rx, DMAs Tx, IO cores, . . . ), and one

connection to the Reorder Core (or RC). The purpose of the

MPFE is to forward the requests pending on its ports to the

RC one after the other. To do so, each port is assigned a

priority and the highest is forwarded first. When several ports

have the same priority, they are arbitrated in Round-Robin.

The starvation on low-priority ports can be avoided thanks to

a starvation counter (or SC). When a request arrives on a port,

its SC starts decounting from a predefined value. When the SC

reaches 0, the port gets the highest priority.

In order to simplify the modelling, in the rest of the paper,

we will assume equal priorities on all ports and a disabled SC

mechanism so that the MPFE forwards the requests in a pure

Round-Robin fashion. This configuration is realistic since it

can be applied on the real hardware.

The Reorder Core receives the requests forwarded by the

MPFE and issue them efficiently to the controller. The RC

has a queue of 8 elements that is arbitrated as follows:

1) High priority requests (same priority as for the MPFE)

goes first;

2) Requests on active banks goes first;

3) Requests targeting a recently opened pages wait tRC

before being issued;

4) RD request goes before a WR if the previous request

was a RD (same thing for WR).

Every time a request is issued to the controller, the RC accepts

a new entering request from the MPFE and the 4 rules are re-

evaluated.

Example 4 (Reorder Core): The following requests are

present in the reordering pool:

R1: RD of priority 7 to a new page in bank 0;

R2: WR of priority 4 to an opened page in bank 1;

R3: RD of priority 4 to a new page in bank 0;

R4: RD of priority 4 to a new page in bank 1;

R5: WR of priority 7 to an opened page in bank 2;

R6: WR of priority 7 to a new page in bank 1;

R7: WR of priority 4 to an opened page in bank 3;

The requests will be served in the following order by the RC:

1) R5: wins rule 1) with R1 and R6 and wins rule 2)

2) R6: wins rule 1) with R1 and wins rule 4)

3) R1: wins rule 1)

4) R7: wins rule 2) (page of R2 has been closed by R6)

5) R3: wins rule 3) (bank 0 is the least recently opened)

6) R4: wins rule 4)

7) R2: last request

D. Bounding the duration of a DDR3-SDRAM transaction

In this section, we try to bound the duration of a reference

memory transaction denoted τ and composed of Nτ
req requests

initiated by one master and we consider a total number of

Ntrans competitors (all masters with pending memory requests

including the one issuing τ ). If all the possible masters are

issuing memory requests simultaneously, Ntrans = Nmax
trans.

With the previous assumptions,in the worst case, the number

of arbitration round required for all Nτ
req requests to cross the

MPFE is bounded by:

Nmax
round = Nτ

req ×Nmax
trans (3)

In the worst case, a request stays in the reorder queue at

most while 2n− 1 (n is the number of element in the queue,

8 for the MPPA
R©-256) other requests are issued before. So, if

Nmax
trans ≤ (2n−1), several requests of τ can be located in the

reordering pool simultaneously and can be issued fastly to the

controller as they certainly target the same page. Otherwise,

each request of τ is ensured to get out of the reordering pool

before the arrival of any other request of τ . In both cases,

the duration of τ is mostly dictated by equation 3. So, the

maximum duration of τ can be bounded by:

tmax
τ ≤ (Nmax

round + 2n− 1)× tmax
req (4)

6



with tmax
req the worst case request time (a read following a write

with row conflict).

In the following sections, we provide numerical examples

of all the previously enumerated composition rules for each

identified potential source of interference and we put in evi-

dence the part of pessimism that can be avoided by restricting

the execution of the applications with a number rules.

V. COST OF COMPOSABILITY

In this section, we explain the methodology enabling to

bound the end-to-end latency of the write process of Exam-

ple 1 of Section II as shown in figure 6. At first, we provide

the analytical study of this example and we then provide some

numerical applications in order to emphasize the pessimism

implied by the worst-case-everywhere approach.

A. End-to-end latency

1) Local memory: During the phase 1, the time required

by Core 3 to write the data to be sent into the Bank 1 of the

Tile’s local memory can be calculated with equation 1:

t1(Nreq, strans) =

⌈
strans
wc

mem

⌉

×
Nreq

f c
mem

with Nreq being the number of requesters accessing the same

bank of the Computing Tile’s local memory. We assume that

during the phase 2, the time required by Core 3 to signal its

intention to send data to the DMA is one clock cycle t2 = 1.

2) Network on Chip: The phases 3, 4, 5 and 6 must be

considered simultaneously as they are all impacted by the NoC

management. As explained in section III-B, it is impossible to

bound the NoC crossing time of a packet in complete isolation

without strong assumptions on the concurrent NoC users or

on the execution model orchestrating the applications. To deal

with this problem, we assume that inter-application NoC traffic

isolation is ensured with a pre-computed TDMA scheduling

table. The respect of the TDMA requirements are ensured by

trusted software granting or delaying the NoC access to the

applications. Such model enables us to consider that packets

may be temporary restrained at emission but those travelling

in the NoC are never blocked by any concurrent at router level.

So a transaction of strans bytes will require a flow φk of Nφk

pk

packets to be completely sent:

Nφk

pk (strans) =

⌈

strans
smax
pk × sflit

⌉

We consider that φk has been allocated a path of Nφk

R routers

during a time window of Lφk
NoC cycles every Tφk

cycles.

We assume that the length of Lφk
is long enough for the

emission of at least one packet of maximum size. As shown

in figure 6, we note ∆ the time between the end of the phase

1 and the emission of the first flit of the first packet. Because

of the TDMA allocation of the NoC, the maximum ∆ occurs

when the phase 1 ends exactly at the end of one Lφk
. In this

case ∆max = Tφk
− Lφk

.

Lφk
Lφk

Tφk

Local Memory

NoC

Fig. 7: Impact of Nreq on NoC utilization

a) Consecutive packets: At first, we consider no inter-

ference at local memory level when the DMA reads the data

to be injected in the NoC as shown in figure 6. In this case,

the flits of all the packets are sent consecutively. We note λφk

the time (in cycles) needed by one flit to cross the complete

path:

λφk
= Nφk

R × (δR + 1)

where δR is the latency of one router. We also assume each

NoC link can be crossed by one flit each cycle. Thus the time

(in cycles) needed by Nflits to cross the NoC is:

tNoC(Nflits) = λφk
+Nflits

And, the maximum number of flits N
Lφk

flits that can be sent in

one Lφk
is :

N
Lφk

flits = Lφk
− λφk

So, the maximum number of packets that can be sent in one

Lφk
is:

NNoC
pk =






N
Lφk

flits

smax
pk + sheader




 (5)

b) Non consecutive packets: As shown in figure 7, due to

interference at local memory level, the DMA may not be able

to read data fast enough to effectively send NNoC
pk packets.

Indeed, during a time window of Lφk
cycles, depending on

the number of local memory requesters accessing the same

SRAM bank Nreq , the maximum amount of data that can be

read from the local memory can be derived from equation 1:

sLφk
(Nreq) =

⌊
Lφk

fNoC

×
f c
mem

Nreq

⌋

× wc
mem

And so, the number of packets that can be read from local

memory NSRAM
pk is:

NSRAM
pk (Nreq) =

⌊

sLφk
(Nreq)

smax
pk × sflit

⌋

(6)

c) Combination: Thanks to equations 5 and 6, we can

calculate the actual number of packets crossing the NoC during

a time window Lφk
with:

N
Lφk

pk (Nreq) = min(NNoC
pk , NSRAM

pk (Nreq))

Hence, the number of Lφk
windows needed to send every

packets of φk is:

Nφk

Lφk
(strans, Nreq) =







Nφk

pk (strans)

N
Lφk

pk (Nreq)







And the end-to-end latency tφk
of φk is:

tφk
(strans, Nreq) = Nφk

Lφk
(strans, Nreq)× Tφk

7



Local memory

Network on Chip

DDR3-SDRAM

ttotal

Tφk
Tφk

t1 ∆ Lφk
tSRAM
pk Lφk

tDDR
Lφk

tNoC
pk

tDDR
Lφk

Fig. 6: End-to-end latency of a memory transaction

Lφk
Lφk

Tφk

NoC
DDR3-SDRAM

Fig. 8: Data received is not written quickly to DDR3-SDRAM

3) DDR3-SDRAM: With the bound on Tmax
τ of equation 4

and the number of request per packet Npk
req , we calculate a

bound on the time required to write the N
Lφk

pk packets into

memory with:

tDDR
Lφk

≤











N
Lφk

pk

Npk
req







×Nmax
trans + 2n− 1



× tmax
req (7)

In the rest of the paper, we denote the right part of equa-

tion 7 as bDDR
Lφk

. Obviously, this bound seems pessimistic as

it considers tmax
req for any request issued to the controller.

However, it is a safe bound since no assumptions are made

on the competitors and therefore the considered worst-case

can happen. Especially, one may note that no assumptions are

made on the following parameters:

• the number of competitors;

• their type (read or write);

• their locality (which row of which bank are they access-

ing);

4) End-to-end latency calculation: There are two cases to

consider in order to calculate the maximum duration of the

memory transaction:

• bDDR
Lφk

< Tφk
: The data received during one Lφk

are

completely written into memory before the start of the

next Lφk
. So, the DDR3-SDRAM latency is somehow

masked by the TDMA allocation of the NoC as shown

in figure 6. In this case, the total end-to-end maximum

duration of the memory transaction is bounded by:

b1trans = t1 + tφk
− Lφk

+ tNoC
pk + bDDR

Lφk

• bDDR
Lφk

> Tφk
: The data received from the NoC are not

written into the memory fast enough and thus, are stored

in a queue, waiting to be treated as shown in figure 8.

We assume here that the queues are large enough to not

overflow. In this case, the DDR latency is dominating the

calculation of the total end to end maximum duration of

the memory transaction. Its bound is:

b2trans = t1+∆max+ tSRAM
pk + tNoC

pk +(Nφk

Lφk
× bDDR

Lφk
)

So, we can upper-bound the worst case duration of the memory

transaction ttotaltrans with:

ttotaltrans ≤ max(b1trans, b
2

trans)

B. Numerical applications

We illustrate the previous analyses with an example using

the indicative hardware parameters of table III. We assume a

transaction of strans = 4 KiB of data with a corresponding

flow φk crossing a path of Nφk

R = 4 routers during Lφk
= 512

cycles every Tφk
= 1024 cycles.

Compute Tiles Network on Chip IO Tiles

Nc
c 10 sflit 4 Bytes N io

c 4

Nc
dma

1 smax
pk

64 flits N io
dma

4

Nc
bank

8 sheader 2 flits External Memory

fc
mem 600 MHz fNoC 600 MHz N

pk
req 2

wc
mem 8 Bytes δR 5 cycles Datasheet [10]

TABLE III: Indicative hardware parameters

1) Local memory: We show on table IV the impact of

the number of local memory competitors Nreq on t1 and the

number of Lφk
required to send all the data. We can see t1 is

growing linearly with Nreq . We also note that NLφk
is strongly

impacted by the concurrency at local memory level. The large

values of Nreq obviously imply a large under-utilization of the

NoC.

Nreq 1 3 5 7 9 11

t1 (in cycles) 512 1536 2560 3584 4608 5632

NLφk
3 4 6 8 16 16

TABLE IV: Impact of Nreq

2) DDR3-SDRAM: We assume tmax
req happens in the case of

a row-conflicting read request following a write. Thus, using

the expressions of table II, we have:

tmax
req = tWR + tRP + tRCD + tCAS + tBURST = 67.5 ns

This is required since no assumptions on the type, locality

and number of concurrent transactions are made. However,

8



the restriction of the memory access patterns thanks to

an appropriate execution model could significantly decrease

bDDR
Lφk

. Indeed, by avoiding the overlapping of row conflicting

transactions, tmax
req could be replaced by:

t1req = tCAS + tBURST = 18.75 ns

and the cost of precharging and activating pages should be

payed only once per transaction. This would reduce bDDR
Lφk

up to (67.5 − 18.75)/67.5 = 72%. Grouping RD and WR
would also allow to avoid the tWTR penalty and improve both

the performance and the tightness of the worst-case bound.

Finally, reducing the maximum number of competitors Nmax
trans

will reduce Nmax
round and thus bDDR

Lφk
significantly.

VI. RECOMMENDATIONS

A. Local memory

We have seen that the local memory of the Compute

Tiles can be shared fairly amongst many requesters. However,

always considering the maximum number of competitors can

lead to introduce a large pessimism in the calculation of the

memory accesses latencies, especially when the number of

banks of the memory is close to the number of potential

requesters. In this case, static bank allocation seems to be

a reasonable method to bound the number of potential re-

questers to a bank, and thus, to reduce the implied pessimism

accordingly. Moreover, we showed that the NoC utilization is

strongly dependent on the local memory bandwidth allocated

to the Tile’s DMA. Thus, managing the maximum concurrency

with the DMA seems to be a key element to ensure good

performances.

B. Network on Chip

The essential three parameters for the Network on Chip

management are: 1) the path allocated to each flow; 2)the

width of the time window Lφ and 3) its corresponding period

Tφ. The flows paths and periods must be chosen carefully.

Indeed, in such strictly periodic systems, two flows with

prime periods will not be able to share a NoC link [12].

So, as explained in section III-B, we recommend to use

processors where the routing policy is not hardware-based but

can be chosen explicitly by software to gain in flexibility.

Moreover, the choice of the flows periods should not be

completely unrestricted in order to avoid prime periods and to

increase the number of scheduling possibilities. A reasonable

approach could be to define a set of acceptable periods (that

should ideally have large greatest common divisors) that any

application could use. We can coarsely estimate the bandwidth

allocated to one flow φ with Bφ = sflit × fNoC ×
Lφ

Tφ
.

Hence, we can estimate a value of Lφ to fulfill the bandwidth

requirement Bapp of the application by Lφ =
Bapp×Tφ

sflit×fNoC
.

The exact calculation of Lφ will remain application dependent

anyway.

C. DDR SDRAM

We have seen that mainly three parameters have an im-

portant impact on the DDR SDRAM performance and our

ability to tightly bound it. Firstly, the locality of the concurrent

transactions is a major parameter. We showed that private

bank allocation provides good performance isolation between

the competitors but obviously, when we consider a many-

core processor with possibly hundreds or thousands of cores,

the number of memory-requesting applications can be largely

greater than the number of banks. To deal with this problem

we assume each application has an allocated bank (several

applications may be allocated to the same bank anyway) and

we see two solutions: 1) the access to each bank is protected

by a binary semaphore; 2) applications communications are

activated by a pre-computed static scheduling table ensuring

by construction that potential concurrent transactions do not

share banks. The first solution seems to be the simplest to

implement but may not provide a predictable behaviour, and

so, we recommend the second one. Anyway, in both cases, in

order to simplify the bank allocation, the memory controller

should be configured in a non-interleaved addressing scheme

so that contiguous memory addresses represent contiguous

memory locations in the banks.

The maximum number of concurrent transactions is the

second important parameter. We argue that decreasing the

number of potential competitors can be highly beneficial.

Indeed, each requester will be elected more often to place

a memory request in the reordering pool, and thus, be less

sensitive on the configuration of other transactions. This will

improve both performance and predictability. To achieve this,

the access to the external memory may be banned for some

of the potential requesters (the IO Tile’s cores for example).

Moreover, the maximum number of requesters could be also

reduced by computing a static scheduling table ensuring that

the number of potential competitors is below a pre-defined

trigger at any time.

Finally, the types of the concurrent transactions is the

last important parameter. We explained that COTS memory

controllers can largely differ in term of type management,

and thus, provide fairly different performances. By considering

the worst-case approach, a safe upper-bound of the memory

access latency can be found. However, this bound may be large

for two reasons: 1) the memory controller poorly reorders

the requests and has according performances. In this case,

the pessimism of the estimation is low. 2) The reordering

is efficient and the estimated bound is largely superior to

the actual latency. In this case, this approach introduces an

important pessimism. So, the algorithm used to compute the

scheduling tables should include an optimization criteria to

concatenate accesses of the same type. This will both increase

performance and make the memory access latency estimation

insensitive to the type management policy of the controller.

VII. RELATED WORK

Many contributions in the literature propose specific mem-

ory controllers enabling predictable performance. PREDA-

9



TOR [13] uses a closed-page policy with static priority

assigned to requests in order to provide bounded latency.

The Analyzable Memory Controller (or AMC) [14] is rather

similar to PREDATOR. The main difference between AMC

and PREDATOR is the arbitration as AMC implements a

Round-Robin arbiter. PRET [15] partitions the memory in four

groups of banks (two groups by rank) and cycles through

groups in a time triggered fashion in order to provide four

independent resources. ROC [16] uses bank privatization to

limit the impacts of row-conflicts and uses rank-switching to

hide the write-to-read latencies.

However, the utilization of COTS is an important trend

in industry in order to reduce both design costs and time-to

market. Several contributions [17]–[20] have been proposed in

the literature in order to bound the memory access latencies

of multi-core processors by analyzing the DRAM access

protocol and all its related timing parameters. In [17] and

[18], the concurrent transactions are assumed to be reordered

using a simple First-Come First-Serve (or FCFS) policy which

implies a starvation-free behaviour but is not representative of

real COTS memory controllers. The authors of [19] assume

a First-Ready First-Come First-Serve (or FR-FCFS) policy

that is largely implemented within classical COTS memory

controllers but they make strong assumptions about the system

model and especially the task set (each task is assumed to have

enough cache space to store one row of each bank assigned

to it and tasks do not share memory). In [21], the authors

propose a memory bandwidth reservation system implemented

as a Linux Kernel and aiming at providing guaranteed and/or

best-effort memory bandwidth to the applications on COTS

processors. Although the proposed approach seems to provide

good performance isolation between the tasks, the bandwidth

budget allocated to each core may not be respected because

of a mis-prediction of the reclaim algorithm that is thus not

applicable within safety critical hard real time systems.

The authors of [22] propose a global static scheduling

approach to map real-time applications onto many-core proces-

sors but do not take into account the interference of potential

competitors at the local memory and NoC levels. Moreover,

they do not consider external resources such as the DDR-

SDRAM.

VIII. CONCLUSION

In this paper, we proposed a realistic analysis of the

sources of interference between applications on their memory

access path. We defined the composition rules at the local

SRAM, NoC and the DDRx-SDRAM levels in order to bound

the end-to-end duration of any memory access. Hence, we

quantified the potential pessimism implied by a worst-case-

everywhere calculation and we proposed recommendations to

choose COTS processors with specific properties and to build

efficient execution models enabling a much less pessimistic

estimation.

For the future, we plan to implement on real targets the

proposed execution models in order to provide a formal and

experimental analysis.

REFERENCES

[1] Kalray, The MPPA hardware architecture, 2012.
[2] E. Fleury and P. Fraigniaud, “A General Theory for Deadlock Avoidance

in Wormhole-Routed Networks,” IEEE Trans. Parallel Distrib. Syst.,
vol. 9, no. 7, pp. 626–638, 1998.

[3] J. Duato, “A new theory of deadlock-free adaptive routing in wormhole
networks,” IEEE Trans. Parallel Distrib. Syst., vol. 4, no. 12, pp. 1320–
1331, 1993.

[4] B. D. de Dinechin, Y. Durand, D. van Amstel, and A. Ghiti, “Guaranteed
Services of the NoC of a Manycore Processor,” in Proceedings of

the 2014 International Workshop on Network on Chip Architectures

(NoCArc’14), 2014, pp. 11–16.
[5] J.-Y. Le Boudec and P. Thiran, Network Calculus: A Theory of Deter-

ministic Queuing Systems for the Internet. Springer-Verlag, 2001.
[6] A. Garcia, L. Johansson, M. Jonsson, and M. Weckstèn, “Guaranteed

periodic real-time communication over wormhole switched networks,”
in 13th Int. Conf. on Parallel and distributed computing systems (ISCA),
2000, pp. 632–639.

[7] JEDEC, “DDR3 SDRAM STANDARD,” 2012.
[8] B. Jacob, S. Ng, and D. Wang, Memory Systems: Cache, DRAM, Disk.

Morgan Kaufmann Publishers Inc., 2007.
[9] P. Atanassov and P. Puschner, “Impact of DRAM Refresh on the

Execution Time of Real-Time Tasks,” in Proc. IEEE International

Workshop on Application of Reliable Computing and Communication,
2001, pp. 29–34.

[10] Micron, “4Gb: x4, x8, x16 DDR3L SDRAM Description,” 2011.
[11] O. Mutlu and T. Moscibroda, “Stall-time fair memory access scheduling

for chip multiprocessors,” in Proceedings of the 40th Annual IEEE/ACM

International Symposium on Microarchitecture, ser. MICRO 40. Wash-
ington, DC, USA: IEEE Computer Society, 2007, pp. 146–160.

[12] J. Korst, E. H. L. Aarts, J. K. Lenstra, and J. Wessels, “Periodic Mul-
tiprocessor Scheduling,” in Proceedings on Parallel Architectures and

Languages Europe : Volume I: Parallel Architectures and Algorithms,
ser. PARLE ’91, 1991, pp. 166–178.

[13] B. Akesson, K. Goossens, and M. Ringhofer, “PREDATOR: A Pre-
dictable SDRAM Memory Controller,” in Proceedings of the 5th

IEEE/ACM International Conference on Hardware/Software Codesign

and System Synthesis, ser. CODES+ISSS ’07, 2007, pp. 251–256.
[14] M. Paolieri, E. Quiones, F. Cazorla, and M. Valero, “An Analyzable

Memory Controller for Hard Real-Time CMPs,” Embedded Systems

Letters, IEEE, vol. 1, no. 4, pp. 86–90, 2009.
[15] J. Reineke, I. Liu, H. D. Patel, S. Kim, and E. A. Lee, “PRET

DRAM Controller: Bank Privatization for Predictability and Temporal
Isolation,” in Proceedings of the Seventh IEEE/ACM/IFIP International

Conference on Hardware/Software Codesign and System Synthesis, ser.
CODES+ISSS ’11, 2011, pp. 99–108.

[16] Y. Krishnapillai, Z. P. Wu, and R. Pellizzoni, “A Rank-Switching,
Open-Row DRAM Controller for Time-Predictable Systems,” in 26th

Euromicro Conference on Real-Time Systems (ECRTS’14), 2014, pp.
27–38.

[17] Y. Ding, L. Wu, and W. Zhang, “Bounding Worst-Case DRAM Perfor-
mance on Multicore Processors,” Jour. of Comp. Science and Engineer-

ing, vol. 7, no. 1, pp. 53–66, 2013.
[18] Z. P. Wu, Y. Krish, and R. Pellizzoni, “Worst Case Analysis of

DRAM Latency in Multi-requestor Systems,” in 34th Real-Time Systems

Symposium (RTSS’13), 2013, pp. 372–383.
[19] H. Kim, D. de Niz, B. Andersson, M. Klein, O. Mutlu, and R. R. Rajku-

mar, “Bounding memory interference delay in COTS-based multi-core
systems,” in 20th Real-Time and Embedded Technology and Applications

Symposium (RTAS’14), 2014.
[20] H. Yun and R. Pellizzoni, “Parallelism-Aware Memory Interference

Delay Analysis for COTS Multicore Systems,” 2014, submited (arXiv).
[21] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha, “Mem-

Guard: Memory bandwidth reservation system for efficient performance
isolation in multi-core platforms,” in 19th Real-Time and Embedded

Technology and Applications Symposium (RTAS’13), 2013, pp. 55–64.
[22] T. Carle, M. Djemal, D. Potop-Butucaru, and R. De Simone, “Static

mapping of real-time applications onto massively parallel processor
arrays,” in 14th International Conference on Application of Concurrency

to System Design, ser. Proceedings ACSD 2014, Hammamet, Tunisia,
2014.

10


	Introduction
	Platform description
	Sources of interference
	Local memory arbitration
	Network on Chip
	Main memory access

	DRAM Background
	DRAM technology
	Bank commands
	Row activate
	Read
	Write
	Precharge
	Refresh

	Concurrent accesses
	Bank level
	Controller level
	Kalray mppa®-256's arbitration policy

	Bounding the duration of a DDR3-SDRAM transaction

	Cost of composability
	End-to-end latency
	Local memory
	Network on Chip
	DDR3-SDRAM
	End-to-end latency calculation

	Numerical applications
	Local memory
	DDR3-SDRAM


	Recommendations
	Local memory
	Network on Chip
	DDR SDRAM

	Related work
	Conclusion
	References

